These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30086529)

  • 1. The mechanism of anionic polyacrylamide adsorption on the montmorillonite surface in the presence of Cr(VI) ions.
    Wiśniewska M; Fijałkowska G; Szewczuk-Karpisz K
    Chemosphere; 2018 Nov; 211():524-534. PubMed ID: 30086529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anionic polyacrylamide influence on the lead(II) ion accumulation in soil - the study on montmorillonite.
    Fijałkowska G; Szewczuk-Karpisz K; Wiśniewska M
    J Environ Health Sci Eng; 2020 Dec; 18(2):599-607. PubMed ID: 33312586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of polyacrylamide with different contents of carboxyl groups on the chromium (III) oxide adsorption properties in aqueous solution.
    Wiśniewska M; Chibowski S; Urban T
    J Hazard Mater; 2015; 283():815-23. PubMed ID: 25464324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of lead(II) ions accumulation and bioavailability on the montmorillonite and kaolinite surfaces in the presence of polyacrylamide soil flocculant.
    Fijałkowska G; Wiśniewska M; Szewczuk-Karpisz K; Jędruchniewicz K; Oleszczuk P
    Chemosphere; 2021 Aug; 276():130088. PubMed ID: 33711797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative studies on the adsorption of Cr(VI) ions on to various sorbents.
    Baran A; Biçak E; Baysal SH; Onal S
    Bioresour Technol; 2007 Feb; 98(3):661-5. PubMed ID: 16580196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hay-based activated biochars obtained using two different heating methods as effective low-cost sorbents: Solid surface characteristics, adsorptive properties and aggregation in the mixed Cu(II)/PAM system.
    Szewczuk-Karpisz K; Nowicki P; Sokołowska Z; Pietrzak R
    Chemosphere; 2020 Jul; 250():126312. PubMed ID: 32120152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI) adsorption from electroplating plating wastewater by chemically modified coir pith.
    Suksabye P; Thiravetyan P
    J Environ Manage; 2012 Jul; 102():1-8. PubMed ID: 22421026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Immobilization Effect of Natural Mineral Materials on Cr(VI) Remediation in Water and Soil.
    Zhang D; Xu Y; Li X; Wang L; He X; Ma Y; Zou D
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups.
    Neagu V
    J Hazard Mater; 2009 Nov; 171(1-3):410-6. PubMed ID: 19647364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution.
    Niknam Shahrak M; Ghahramaninezhad M; Eydifarash M
    Environ Sci Pollut Res Int; 2017 Apr; 24(10):9624-9634. PubMed ID: 28247275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin.
    Abou El-Reash YG; Otto M; Kenawy IM; Ouf AM
    Int J Biol Macromol; 2011 Nov; 49(4):513-22. PubMed ID: 21684304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Cr(VI) from contaminated soil by electrokinetic remediation.
    Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K
    Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization mechanism of Cd
    Szewczuk-Karpisz K; Bajda T; Tomczyk A; Kuśmierz M; Komaniecka I
    J Hazard Mater; 2022 Apr; 428():128228. PubMed ID: 35033916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of toxic Pb(II) ions by the iron-containing minerals in the presence of ionic polyacrylamide soil conditioner.
    Latusek K; Urban T; Ulatowska J; Polowczyk I; Nowicki P; Wiśniewska M
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):44553-44565. PubMed ID: 36692713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigations of chromium(III) oxide removal from the aqueous suspension using the mixed flocculant composed of anionic and cationic polyacrylamides.
    Wiśniewska M; Chibowski S; Urban T; Terpiłowski K
    J Hazard Mater; 2019 Apr; 368():378-385. PubMed ID: 30690390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemodynamics of chromium reduction in soils: implications to bioavailability.
    Choppala G; Bolan N; Seshadri B
    J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of Cr (VI) by inorganic-organic clay.
    Rathnayake SI; Martens WN; Xi Y; Frost RL; Ayoko GA
    J Colloid Interface Sci; 2017 Mar; 490():163-173. PubMed ID: 27912114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of Chromium(VI) Anionic Species Sorption onto Surfactant-Modified Montmorillonite Clay.
    Krishna BS; Murty DS; Jai Prakash BS
    J Colloid Interface Sci; 2000 Sep; 229(1):230-236. PubMed ID: 10942564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions.
    Yuan P; Fan M; Yang D; He H; Liu D; Yuan A; Zhu J; Chen T
    J Hazard Mater; 2009 Jul; 166(2-3):821-9. PubMed ID: 19135796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.
    Sun Y; Yue Q; Mao Y; Gao B; Gao Y; Huang L
    J Hazard Mater; 2014 Jan; 265():191-200. PubMed ID: 24361798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.