These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30086557)

  • 1. Anti-Inflammatory 18β-Glycyrrhetinin Acid Derivatives Produced by Biocatalysis.
    Fan B; Jiang B; Yan S; Xu B; Huang H; Chen G
    Planta Med; 2019 Jan; 85(1):56-61. PubMed ID: 30086557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotransformation of ursolic acid by
    Chu C; Song K; Zhang Y; Yang M; Fan B; Huang H; Chen G
    Nat Prod Res; 2022 Jun; 36(11):2777-2782. PubMed ID: 33977841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial hydroxylation and glycosidation of oleanolic acid by
    Yan S; Lin H; Huang H; Yang M; Xu B; Chen G
    Nat Prod Res; 2019 Jul; 33(13):1849-1855. PubMed ID: 29842789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of betulinic acid by Circinella muscae and Cunninghamella echinulata to discover anti-inflammatory derivatives.
    Chen C; Song K; Zhang Y; Chu C; Fan B; Song Y; Huang H; Chen G
    Phytochemistry; 2021 Feb; 182():112608. PubMed ID: 33310627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial transformation of glycyrrhetinic acid derivatives by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741.
    Shen P; Zhang J; Zhu Y; Wang W; Yu B; Wang W
    Bioorg Med Chem; 2020 Jun; 28(11):115465. PubMed ID: 32299661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of asiatic acid by
    Wu Y; Lu Y; Yi Y; Wang A; Wang W; Yang M; Fan B; Chen G
    Nat Prod Res; 2023; 37(16):2712-2717. PubMed ID: 36218232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Microbial transformation of glycyrrhetinic acid by Cunninghamella blakesleeana].
    Ma Y; Xie D; Wang ZH; Dai JG; An XQ; Gu ZY
    Zhongguo Zhong Yao Za Zhi; 2015 Nov; 40(21):4212-7. PubMed ID: 27071259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of selective in vitro and in silico BACE1 inhibitory potential of glycyrrhizin together with its metabolites, 18α- and 18β-glycyrrhetinic acid, isolated from Hizikia fusiformis.
    Wagle A; Seong SH; Zhao BT; Woo MH; Jung HA; Choi JS
    Arch Pharm Res; 2018 Apr; 41(4):409-418. PubMed ID: 29532412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, anti-inflammatory, and antioxidant activities of 18beta-glycyrrhetinic acid derivatives as chemical mediators and xanthine oxidase inhibitors.
    Maitraie D; Hung CF; Tu HY; Liou YT; Wei BL; Yang SC; Wang JP; Lin CN
    Bioorg Med Chem; 2009 Apr; 17(7):2785-92. PubMed ID: 19278854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of betulin by Mucor subtilissimus to discover anti-inflammatory derivatives.
    Li J; Jiang B; Chen C; Fan B; Huang H; Chen G
    Phytochemistry; 2019 Oct; 166():112076. PubMed ID: 31351331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural determination of two new triterpenoids biotransformed from glycyrrhetinic acid by Mucor polymorphosporus.
    Xin XL; Yang G; Gou ZP; Yao JH; Lan R; Ma XC
    Magn Reson Chem; 2010 Feb; 48(2):164-7. PubMed ID: 19960494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 18β-glycyrrhetinic acid and hydroxypropyl γcyclodextrin complex on indomethacin-induced small intestinal injury in mice.
    Ishida T; Miki I; Tanahashi T; Yagi S; Kondo Y; Inoue J; Kawauchi S; Nishiumi S; Yoshida M; Maeda H; Tode C; Takeuchi A; Nakayama H; Azuma T; Mizuno S
    Eur J Pharmacol; 2013 Aug; 714(1-3):125-31. PubMed ID: 23792039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-aging derivatives of cycloastragenol produced by biotransformation.
    Chen C; Ni Y; Jiang B; Yan S; Xu B; Fan B; Huang H; Chen G
    Nat Prod Res; 2021 Aug; 35(16):2685-2690. PubMed ID: 31496283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 18β-Glycyrrhetinic acid mitigates radiation-induced skin damage via NADPH oxidase/ROS/p38MAPK and NF-κB pathways.
    Su L; Wang Z; Huang F; Lan R; Chen X; Han D; Zhang L; Zhang W; Hong J
    Environ Toxicol Pharmacol; 2018 Jun; 60():82-90. PubMed ID: 29677640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of Betulonic Acid by the Fungus
    Song KN; Lu YJ; Chu CJ; Wu YN; Huang HL; Fan BY; Chen GT
    J Nat Prod; 2021 Oct; 84(10):2664-2674. PubMed ID: 34546050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of glycyrrhetinic acid derivatives on hepatic and renal 11beta-hydroxysteroid dehydrogenase activities in rats.
    Shimoyama Y; Hirabayashi K; Matsumoto H; Sato T; Shibata S; Inoue H
    J Pharm Pharmacol; 2003 Jun; 55(6):811-7. PubMed ID: 12841942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial transformation of betulonic acid by Circinella muscae CGMCC 3.2695 and anti-neuroinflammatory activity of the products.
    Lu Y; Tang Y; Wu Y; Zhang X; Yi Y; Wang W; Wang A; Yang M; Fan B; Chen G
    Phytochemistry; 2022 Dec; 204():113431. PubMed ID: 36100092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactive microbial metabolites from glycyrrhetinic acid.
    Maatooq GT; Marzouk AM; Gray AI; Rosazza JP
    Phytochemistry; 2010 Feb; 71(2-3):262-70. PubMed ID: 19836031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of tandem biotransformation for biosynthesis of new pentacyclic triterpenoid derivatives with neuroprotective effect.
    Xu SH; Chen HL; Fan Y; Xu W; Zhang J
    Bioorg Med Chem Lett; 2020 Feb; 30(4):126947. PubMed ID: 31924497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, anti-microbial and anti-inflammatory activities of 18β-glycyrrhetinic acid derivatives.
    Yang Y; Zhu Q; Zhong Y; Cui X; Jiang Z; Wu P; Zheng X; Zhang K; Zhao S
    Bioorg Chem; 2020 Aug; 101():103985. PubMed ID: 32544739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.