These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30086715)

  • 1. Fusion of encoder-decoder deep networks improves delineation of multiple nuclear phenotypes.
    Khoshdeli M; Winkelmaier G; Parvin B
    BMC Bioinformatics; 2018 Aug; 19(1):294. PubMed ID: 30086715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NucleiSegNet: Robust deep learning architecture for the nuclei segmentation of liver cancer histopathology images.
    Lal S; Das D; Alabhya K; Kanfade A; Kumar A; Kini J
    Comput Biol Med; 2021 Jan; 128():104075. PubMed ID: 33190012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation.
    Budak Ü; Guo Y; Tanyildizi E; Şengür A
    Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation.
    Kromp F; Fischer L; Bozsaky E; Ambros IM; Dorr W; Beiske K; Ambros PF; Hanbury A; Taschner-Mandl S
    IEEE Trans Med Imaging; 2021 Jul; 40(7):1934-1949. PubMed ID: 33784615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient deep learning architecture with dimension-wise pyramid pooling for nuclei segmentation of histopathology images.
    Aatresh AA; Yatgiri RP; Chanchal AK; Kumar A; Ravi A; Das D; Bs R; Lal S; Kini J
    Comput Med Imaging Graph; 2021 Oct; 93():101975. PubMed ID: 34461375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning-based framework (Co-ReTr) for auto-segmentation of non-small cell-lung cancer in computed tomography images.
    Kunkyab T; Bahrami Z; Zhang H; Liu Z; Hyde D
    J Appl Clin Med Phys; 2024 Mar; 25(3):e14297. PubMed ID: 38373289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformative Deep Neural Network Approaches in Kidney Ultrasound Segmentation: Empirical Validation with an Annotated Dataset.
    Khan R; Xiao C; Liu Y; Tian J; Chen Z; Su L; Li D; Hassan H; Li H; Xie W; Zhong W; Huang B
    Interdiscip Sci; 2024 Jun; 16(2):439-454. PubMed ID: 38413547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep fusion of contextual and object-based representations for delineation of multiple nuclear phenotypes.
    Khoshdeli M; Winkelmaier G; Parvin B
    Bioinformatics; 2019 Nov; 35(22):4860-4861. PubMed ID: 31135022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep learning based dual encoder-decoder framework for anatomical structure segmentation in chest X-ray images.
    Ullah I; Ali F; Shah B; El-Sappagh S; Abuhmed T; Park SH
    Sci Rep; 2023 Jan; 13(1):791. PubMed ID: 36646735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network.
    Wang K; Liang S; Zhong S; Feng Q; Ning Z; Zhang Y
    Med Phys; 2021 Aug; 48(8):4262-4278. PubMed ID: 34053092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual Encoder Attention U-net for Nuclei Segmentation.
    Vahadane A; B A; Majumdar S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3205-3208. PubMed ID: 34891923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A shape context fully convolutional neural network for segmentation and classification of cervical nuclei in Pap smear images.
    Hussain E; Mahanta LB; Das CR; Choudhury M; Chowdhury M
    Artif Intell Med; 2020 Jul; 107():101897. PubMed ID: 32828445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional aggregation network of cell nuclei segmentation aiming histopathological diagnosis assistance: A new MA-Net construction.
    Pu Q; Tian J; Wei D; Shu Q; Sun M; Zhao L
    PLoS One; 2024; 19(9):e0308326. PubMed ID: 39241001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FEEDNet: a feature enhanced encoder-decoder LSTM network for nuclei instance segmentation for histopathological diagnosis.
    Deshmukh G; Susladkar O; Makwana D; Chandra Teja R S; Kumar S N; Mittal S
    Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 35905732
    [No Abstract]   [Full Text] [Related]  

  • 15. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cervical cell's nucleus segmentation through an improved UNet architecture.
    Rasheed A; Shirazi SH; Umar AI; Shahzad M; Yousaf W; Khan Z
    PLoS One; 2023; 18(10):e0283568. PubMed ID: 37788295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VENet: Variational energy network for gland segmentation of pathological images and early gastric cancer diagnosis of whole slide images.
    Zhang S; Yuan Z; Zhou X; Wang H; Chen B; Wang Y
    Comput Methods Programs Biomed; 2024 Jun; 250():108178. PubMed ID: 38652995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CellViT: Vision Transformers for precise cell segmentation and classification.
    Hörst F; Rempe M; Heine L; Seibold C; Keyl J; Baldini G; Ugurel S; Siveke J; Grünwald B; Egger J; Kleesiek J
    Med Image Anal; 2024 May; 94():103143. PubMed ID: 38507894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale fully convolutional neural networks for histopathology image segmentation: From nuclear aberrations to the global tissue architecture.
    Schmitz R; Madesta F; Nielsen M; Krause J; Steurer S; Werner R; Rösch T
    Med Image Anal; 2021 May; 70():101996. PubMed ID: 33647783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SegR-Net: A deep learning framework with multi-scale feature fusion for robust retinal vessel segmentation.
    Ryu J; Rehman MU; Nizami IF; Chong KT
    Comput Biol Med; 2023 Sep; 163():107132. PubMed ID: 37343468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.