These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30086930)

  • 1. A ''turn-off'' SERS assay for kinase detection based on arginine N-phosphorylation process.
    Cai H; Huang B; Lin R; Xu P; Liu Y; Zhao Y
    Talanta; 2018 Nov; 189():353-358. PubMed ID: 30086930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A "turn-off" SERS-based detection platform for ultrasensitive detection of thrombin based on enzymatic assays.
    Wu Z; Liu Y; Zhou X; Shen A; Hu J
    Biosens Bioelectron; 2013 Jun; 44():10-5. PubMed ID: 23380645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and universal "turn-on" detection platform for proteases based on surface enhanced Raman scattering (SERS).
    Wu Z; Liu Y; Liu Y; Xiao H; Shen A; Zhou X; Hu J
    Biosens Bioelectron; 2015 Mar; 65():375-81. PubMed ID: 25461184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A "turn-off" SERS assay of heparin with high selectivity based on heparin-peptide complex and Raman labelled gold nanoparticles.
    Qu G; Zhang G; Wu Z; Shen A; Wang J; Hu J
    Biosens Bioelectron; 2014 Oct; 60():124-9. PubMed ID: 24793094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA assembly and enzymatic cutting in solutions: a gold nanoparticle based SERS detection strategy.
    Crew E; Yan H; Lin L; Yin J; Skeete Z; Kotlyar T; Tchah N; Lee J; Bellavia M; Goodshaw I; Joseph P; Luo J; Gal S; Zhong CJ
    Analyst; 2013 Sep; 138(17):4941-9. PubMed ID: 23799231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.
    Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L
    ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of label-free, homogeneous biosensing platform based on plasmonic coupling and surface-enhanced Raman scattering using unmodified gold nanoparticles.
    Yi Z; Li XY; Liu FJ; Jin PY; Chu X; Yu RQ
    Biosens Bioelectron; 2013 May; 43():308-14. PubMed ID: 23353007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe.
    Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z
    Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into the regulation of protein-arginine kinase McsB by McsA.
    Arifuzzaman M; Kwon E; Kim DY
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2320312121. PubMed ID: 38625935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target triggered self-assembly of Au nanoparticles for amplified detection of Bacillus thuringiensis transgenic sequence using SERS.
    Chen K; Wu L; Jiang X; Lu Z; Han H
    Biosens Bioelectron; 2014 Dec; 62():196-200. PubMed ID: 24999997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva.
    Zheng P; Li M; Jurevic R; Cushing SK; Liu Y; Wu N
    Nanoscale; 2015 Jul; 7(25):11005-12. PubMed ID: 26008641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.
    Li J; Zhu Z; Zhu B; Ma Y; Lin B; Liu R; Song Y; Lin H; Tu S; Yang C
    Anal Chem; 2016 Aug; 88(15):7828-36. PubMed ID: 27385563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ regulation nanoarchitecture of Au nanoparticles/reduced graphene oxide colloid for sensitive and selective SERS detection of lead ions.
    Zhao L; Gu W; Zhang C; Shi X; Xian Y
    J Colloid Interface Sci; 2016 Mar; 465():279-85. PubMed ID: 26688120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing.
    Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X
    Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation induced Raman scattering of squaraine dye: Implementation in diagnosis of cervical cancer dysplasia by SERS imaging.
    Narayanan N; Karunakaran V; Paul W; Venugopal K; Sujathan K; Kumar Maiti K
    Biosens Bioelectron; 2015 Aug; 70():145-52. PubMed ID: 25801955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of metal nanoparticles with recombinant arginine kinase from Trypanosoma brucei: thermodynamic and spectrofluorimetric evaluation.
    Adeyemi OS; Whiteley CG
    Biochim Biophys Acta; 2014 Jan; 1840(1):701-6. PubMed ID: 24184914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.
    Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.