These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 30086972)
1. Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers. Hakonen A; Wu K; Stenbæk Schmidt M; Andersson PO; Boisen A; Rindzevicius T Talanta; 2018 Nov; 189():649-652. PubMed ID: 30086972 [TBL] [Abstract][Full Text] [Related]
2. Hand-Held Femtogram Detection of Hazardous Picric Acid with Hydrophobic Ag Nanopillar SERS Substrates and Mechanism of Elasto-Capillarity. Hakonen A; Wang F; Andersson PO; Wingfors H; Rindzevicius T; Schmidt MS; Soma VR; Xu S; Li Y; Boisen A; Wu H ACS Sens; 2017 Feb; 2(2):198-202. PubMed ID: 28723138 [TBL] [Abstract][Full Text] [Related]
3. Selective surface-enhanced Raman scattering detection of Tabun, VX and Cyclosarin nerve agents using 4-pyridine amide oxime functionalized gold nanopillars. Juhlin L; Mikaelsson T; Hakonen A; Schmidt MS; Rindzevicius T; Boisen A; Käll M; Andersson PO Talanta; 2020 May; 211():120721. PubMed ID: 32070593 [TBL] [Abstract][Full Text] [Related]
4. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. Hakonen A; Andersson PO; Stenbæk Schmidt M; Rindzevicius T; Käll M Anal Chim Acta; 2015 Sep; 893():1-13. PubMed ID: 26398417 [TBL] [Abstract][Full Text] [Related]
5. Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Yang Y; Li ZY; Yamaguchi K; Tanemura M; Huang Z; Jiang D; Chen Y; Zhou F; Nogami M Nanoscale; 2012 Apr; 4(8):2663-9. PubMed ID: 22410821 [TBL] [Abstract][Full Text] [Related]
6. Detection of Buried Explosives Using a Surface-Enhanced Raman Scattering (SERS) Substrate Tailored for Miniaturized Spectrometers. Huang Y; Liu W; Gong Z; Wu W; Fan M; Wang D; Brolo AG ACS Sens; 2020 Sep; 5(9):2933-2939. PubMed ID: 32799533 [TBL] [Abstract][Full Text] [Related]
7. Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Hakonen A; Rindzevicius T; Schmidt MS; Andersson PO; Juhlin L; Svedendahl M; Boisen A; Käll M Nanoscale; 2016 Jan; 8(3):1305-8. PubMed ID: 26676552 [TBL] [Abstract][Full Text] [Related]
8. Instantaneous trace detection of nitro-explosives and mixtures with nanotextured silicon decorated with Ag-Au alloy nanoparticles using the SERS technique. Moram SSB; Shaik AK; Byram C; Hamad S; Soma VR Anal Chim Acta; 2020 Mar; 1101():157-168. PubMed ID: 32029107 [TBL] [Abstract][Full Text] [Related]
9. A Semi-quantitative method for the detection of fentanyl using surface-enhanced Raman scattering (SERS) with a handheld Raman instrument. Smith M; Logan M; Bazley M; Blanchfield J; Stokes R; Blanco A; McGee R J Forensic Sci; 2021 Mar; 66(2):505-519. PubMed ID: 33136303 [TBL] [Abstract][Full Text] [Related]
10. Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis. Kamińska A; Szymborski T; Jaroch T; Zmysłowski A; Szterk A Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():208-217. PubMed ID: 29519430 [TBL] [Abstract][Full Text] [Related]
11. Circumventing silver oxidation induced performance degradation of silver surface-enhanced Raman scattering substrates. Wang Y; Kang Y; Wang WY; Ding Q; Zhou J; Yang S Nanotechnology; 2018 Oct; 29(41):414001. PubMed ID: 30052528 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of handheld Raman spectrometers for the detection of intact explosives. Kuehn M; Bates K; Tyler Davidson J; Monjardez G Forensic Sci Int; 2023 Dec; 353():111875. PubMed ID: 37924573 [TBL] [Abstract][Full Text] [Related]
13. Unraveling near-field and far-field relationships for 3D SERS substrates--a combined experimental and theoretical analysis. Kurouski D; Large N; Chiang N; Greeneltch N; Carron KT; Seideman T; Schatz GC; Van Duyne RP Analyst; 2016 Mar; 141(5):1779-88. PubMed ID: 26858996 [TBL] [Abstract][Full Text] [Related]
14. Detection of Explosives by SERS Platform Using Metal Nanogap Substrates. Adhikari S; Ampadu EK; Kim M; Noh D; Oh E; Lee D Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451009 [TBL] [Abstract][Full Text] [Related]
15. Plasmonic substrates for surface enhanced Raman scattering. Li W; Zhao X; Yi Z; Glushenkov AM; Kong L Anal Chim Acta; 2017 Sep; 984():19-41. PubMed ID: 28843563 [TBL] [Abstract][Full Text] [Related]
16. ZnGa₂O₄ nanorod arrays decorated with Ag nanoparticles as surface-enhanced Raman-scattering substrates for melamine detection. Chen L; Jiang D; Liu X; Qiu G Chemphyschem; 2014 Jun; 15(8):1624-31. PubMed ID: 24677318 [TBL] [Abstract][Full Text] [Related]
17. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing. Huang J; Ma D; Chen F; Bai M; Xu K; Zhao Y Anal Chem; 2015 Oct; 87(20):10527-34. PubMed ID: 26406111 [TBL] [Abstract][Full Text] [Related]
18. Investigation of Mass-Produced Substrates for Reproducible Surface-Enhanced Raman Scattering Measurements over Large Areas. Reyer A; Prinz A; Giancristofaro S; Schneider J; Bertoldo Menezes D; Zickler G; Bourret GR; Musso ME ACS Appl Mater Interfaces; 2017 Aug; 9(30):25445-25454. PubMed ID: 28737921 [TBL] [Abstract][Full Text] [Related]
19. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Wang C; Wu X; Dong P; Chen J; Xiao R Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319 [TBL] [Abstract][Full Text] [Related]
20. Highly sensitive detection of blood by surface enhanced Raman scattering. Boyd S; Bertino MF; Ye D; White LS; Seashols SJ J Forensic Sci; 2013 May; 58(3):753-6. PubMed ID: 23488826 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]