These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30087290)

  • 1. Physical Extraction and Feature Fusion for Multi-Mode Signals in a Measurement System for Patients in Rehabilitation Exoskeleton.
    Yang C; Wei Q; Wu X; Ma Z; Chen Q; Wang X; Wang H; Fan W
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30087290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Continuous Integral-Sliding-Mode Controller for Wearable Robots: Application to an Upper Limb Exoskeleton.
    Jebri A; Madani T; Djouani K
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():766-771. PubMed ID: 31374723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobile Robot Indoor Positioning Based on a Combination of Visual and Inertial Sensors.
    Gao M; Yu M; Guo H; Xu Y
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A basic study on variable-gain Kalman filter based on angle error calculated from acceleration signals for lower limb angle measurement with inertial sensors.
    Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3423-6. PubMed ID: 24110464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter.
    Sado F; Yap HJ; Ghazilla RAR; Ahmad N
    PLoS One; 2018; 13(7):e0200193. PubMed ID: 30001415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation.
    Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z
    Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Admittance Control Scheme Comparison of EXO-UL8: A Dual-Arm Exoskeleton Robotic System.
    Shen Y; Sun J; Ma J; Rosen J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():611-617. PubMed ID: 31374698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Markov jump linear systems-based position estimation for lower limb exoskeletons.
    Nogueira SL; Siqueira AA; Inoue RS; Terra MH
    Sensors (Basel); 2014 Jan; 14(1):1835-49. PubMed ID: 24451469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals.
    Sánchez Manchola MD; Pinto Bernal MJ; Munera M; Cifuentes CA
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
    Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gated Sensor Fusion: A way to Improve the Precision of Ambulatory Human Body Motion Estimation.
    Olivares A; Górriz JM; Ramírez J; Olivares G
    Stud Health Technol Inform; 2014; 207():37-46. PubMed ID: 25488209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research on Control System of an Exoskeleton Upper-limb Rehabilitation Robot].
    Wang L; Hu X; Hu J; Fang Y; He R; Yu H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Dec; 33(6):1168-75. PubMed ID: 29715415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematics based sensory fusion for wearable motion assessment in human walking.
    Slajpah S; Kamnik R; Munih M
    Comput Methods Programs Biomed; 2014 Sep; 116(2):131-44. PubMed ID: 24374292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Multi-modal synergistic quantitative analysis and rehabilitation assessment of lower limbs for exoskeleton].
    Zhong X; Zhang B; Li J; Zhang L; Yuan X; Zhang P; Zhao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Oct; 40(5):953-964. PubMed ID: 37879925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of velocity and acceleration in joint angle estimation for an EMG-Based upper-limb exoskeleton control.
    Tang Z; Yu H; Yang H; Zhang L; Zhang L
    Comput Biol Med; 2022 Feb; 141():105156. PubMed ID: 34942392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real time computation of Centroidal Momentum while human walking in the lower limbs rehabilitation exoskeleton: Preliminary trials.
    Jung JH; Veneman JF
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():721-726. PubMed ID: 31374716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Human Activity Recognition with IMU and Encoder Sensors in Wearable Exoskeleton Robot via Deep Learning Networks.
    Jaramillo IE; Jeong JG; Lopez PR; Lee CH; Kang DY; Ha TJ; Oh JH; Jung H; Lee JH; Lee WH; Kim TS
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-contained pedestrian tracking during normal walking using an inertial/magnetic sensor module.
    Meng X; Zhang ZQ; Wu JK; Wong WC; Yu H
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):892-9. PubMed ID: 24557690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A pace recognition method for exoskeleton wearers based on support vector machine-hidden Markov model].
    Hu D; Liu Z; Chen L; Wang Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):84-91. PubMed ID: 35231969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.