These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
505 related articles for article (PubMed ID: 30087363)
1. The influence of latitude, geographic distance, and habitat discontinuities on genetic variation in a high latitude montane species. Hindley JA; Graham BA; Pulgarin-R PC; Burg TM Sci Rep; 2018 Aug; 8(1):11846. PubMed ID: 30087363 [TBL] [Abstract][Full Text] [Related]
2. When east meets west: population structure of a high-latitude resident species, the boreal chickadee (Poecile hudsonicus). Lait LA; Burg TM Heredity (Edinb); 2013 Oct; 111(4):321-9. PubMed ID: 23759728 [TBL] [Abstract][Full Text] [Related]
3. Phylogeography of the mountain chickadee (Poecile gambeli): diversification, introgression, and expansion in response to Quaternary climate change. Spellman GM; Riddle B; Klicka J Mol Ecol; 2007 Mar; 16(5):1055-68. PubMed ID: 17305860 [TBL] [Abstract][Full Text] [Related]
4. Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Jackson JM; Pimsler ML; Oyen KJ; Koch-Uhuad JB; Herndon JD; Strange JP; Dillon ME; Lozier JD Mol Ecol; 2018 Jul; 27(14):2926-2942. PubMed ID: 29862596 [TBL] [Abstract][Full Text] [Related]
5. Influence of habitat discontinuity, geographical distance, and oceanography on fine-scale population genetic structure of copper rockfish (Sebastes caurinus). Johansson ML; Banks MA; Glunt KD; Hassel-Finnegan HM; Buonaccorsi VP Mol Ecol; 2008 Jul; 17(13):3051-61. PubMed ID: 18522692 [TBL] [Abstract][Full Text] [Related]
6. Environmental drivers behind the genetic differentiation in mountain chickadees ( Srikanthan P; Burg TM Genome; 2024 Feb; 67(2):53-63. PubMed ID: 37922513 [TBL] [Abstract][Full Text] [Related]
7. Effects of historical climate change, habitat connectivity, and vicariance on genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus) in the Pacific Northwestern United States. Miller MP; Bellinger MR; Forsman ED; Haig SM Mol Ecol; 2006 Jan; 15(1):145-59. PubMed ID: 16367837 [TBL] [Abstract][Full Text] [Related]
8. Genetic divergence in the common bush-tanager Chlorospingus ophthalmicus (Aves: Emberizidae) throughout Mexican cloud forests: The role of geography, ecology and Pleistocene climatic fluctuations. Maldonado-Sánchez D; Gutiérrez-Rodríguez C; Ornelas JF Mol Phylogenet Evol; 2016 Jun; 99():76-88. PubMed ID: 26988412 [TBL] [Abstract][Full Text] [Related]
9. Lineage diversification and historical demography of a montane bird Garrulax elliotii--implications for the Pleistocene evolutionary history of the eastern Himalayas. Qu Y; Luo X; Zhang R; Song G; Zou F; Lei F BMC Evol Biol; 2011 Jun; 11():174. PubMed ID: 21689460 [TBL] [Abstract][Full Text] [Related]
10. Pleistocene refugia in an arid landscape: analysis of a widely distributed Australian passerine. Toon A; Mather PB; Baker AM; Durrant KL; Hughes JM Mol Ecol; 2007 Jun; 16(12):2525-41. PubMed ID: 17561911 [TBL] [Abstract][Full Text] [Related]
11. Geography and past climate changes have shaped the evolution of a widespread lizard from the Chilean hotspot. Muñoz-Mendoza C; D'Elía G; Panzera A; Méndez T MA; Villalobos-Leiva A; Sites JW; Victoriano PF Mol Phylogenet Evol; 2017 Nov; 116():157-171. PubMed ID: 28887150 [TBL] [Abstract][Full Text] [Related]
12. Genetic structuring and recent demographic history of red pandas (Ailurus fulgens) inferred from microsatellite and mitochondrial DNA. Hu Y; Guo Y; Qi D; Zhan X; Wu H; Bruford MW; Wei F Mol Ecol; 2011 Jul; 20(13):2662-75. PubMed ID: 21585580 [TBL] [Abstract][Full Text] [Related]
13. Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie-chickens. Johnson JA; Toepfer JE; Dunn PO Mol Ecol; 2003 Dec; 12(12):3335-47. PubMed ID: 14629350 [TBL] [Abstract][Full Text] [Related]
14. Genetic patterns of habitat fragmentation and past climate-change effects in the Mediterranean high-mountain plant Armeria caespitosa (Plumbaginaceae). García-Fernández A; Iriondo JM; Escudero A; Aguilar JF; Feliner GN Am J Bot; 2013 Aug; 100(8):1641-50. PubMed ID: 23857736 [TBL] [Abstract][Full Text] [Related]
15. High latitudes and high genetic diversity: phylogeography of a widespread boreal bird, the gray jay (Perisoreus canadensis). van Els P; Cicero C; Klicka J Mol Phylogenet Evol; 2012 May; 63(2):456-65. PubMed ID: 22321688 [TBL] [Abstract][Full Text] [Related]
16. Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in North America. Maroja LS; Bogdanowicz SM; Wallin KF; Raffa KF; Harrison RG Mol Ecol; 2007 Jun; 16(12):2560-73. PubMed ID: 17561913 [TBL] [Abstract][Full Text] [Related]
17. Hot spots of genetic diversity descended from multiple Pleistocene refugia in an alpine ungulate. Shafer AB; Côté SD; Coltman DW Evolution; 2011 Jan; 65(1):125-38. PubMed ID: 20731714 [TBL] [Abstract][Full Text] [Related]
18. The role of ecological factors in determining phylogeographic and population genetic structure of two sympatric island skinks (Plestiodon kishinouyei and P. stimpsonii). Kurita K; Toda M Genetica; 2017 Apr; 145(2):223-234. PubMed ID: 28271307 [TBL] [Abstract][Full Text] [Related]
19. Landscape characteristics influence morphological and genetic differentiation in a widespread raptor (Buteo jamaicensis). Hull JM; Hull AC; Sacks BN; Smith JP; Ernest HB Mol Ecol; 2008 Feb; 17(3):810-24. PubMed ID: 18208488 [TBL] [Abstract][Full Text] [Related]
20. Life on the rocks: Multilocus phylogeography of rock hyrax (Procavia capensis) from southern Africa. Maswanganye KA; Cunningham MJ; Bennett NC; Chimimba CT; Bloomer P Mol Phylogenet Evol; 2017 Sep; 114():49-62. PubMed ID: 28411160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]