These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 30087396)
1. ACR11 modulates levels of reactive oxygen species and salicylic acid-associated defense response in Arabidopsis. Singh SK; Sung TY; Chung TY; Lin SY; Lin SC; Liao JC; Hsieh WY; Hsieh MH Sci Rep; 2018 Aug; 8(1):11851. PubMed ID: 30087396 [TBL] [Abstract][Full Text] [Related]
2. The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens Xanthomonas citri subsp. citri and Pseudomonas syringae pv. phaseolicola NPS3121. An C; Wang C; Mou Z New Phytol; 2017 May; 214(3):1245-1259. PubMed ID: 28134437 [TBL] [Abstract][Full Text] [Related]
3. Chitosan Oligosaccharide Induces Resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis thaliana by Activating Both Salicylic Acid- and Jasmonic Acid-Mediated Pathways. Jia X; Zeng H; Wang W; Zhang F; Yin H Mol Plant Microbe Interact; 2018 Dec; 31(12):1271-1279. PubMed ID: 29869942 [TBL] [Abstract][Full Text] [Related]
4. The ACR11 encodes a novel type of chloroplastic ACT domain repeat protein that is coordinately expressed with GLN2 in Arabidopsis. Sung TY; Chung TY; Hsu CP; Hsieh MH BMC Plant Biol; 2011 Aug; 11():118. PubMed ID: 21861936 [TBL] [Abstract][Full Text] [Related]
5. Nonsense-mediated mRNA decay factors, UPF1 and UPF3, contribute to plant defense. Jeong HJ; Kim YJ; Kim SH; Kim YH; Lee IJ; Kim YK; Shin JS Plant Cell Physiol; 2011 Dec; 52(12):2147-56. PubMed ID: 22025558 [TBL] [Abstract][Full Text] [Related]
6. Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. Wang L; Tsuda K; Sato M; Cohen JD; Katagiri F; Glazebrook J PLoS Pathog; 2009 Feb; 5(2):e1000301. PubMed ID: 19214217 [TBL] [Abstract][Full Text] [Related]
7. Constitutive salicylic acid accumulation in pi4kIIIβ1β2 Arabidopsis plants stunts rosette but not root growth. Sašek V; Janda M; Delage E; Puyaubert J; Guivarc'h A; López Maseda E; Dobrev PI; Caius J; Bóka K; Valentová O; Burketová L; Zachowski A; Ruelland E New Phytol; 2014 Aug; 203(3):805-16. PubMed ID: 24758581 [TBL] [Abstract][Full Text] [Related]
8. Arabidopsis GH3-LIKE DEFENSE GENE 1 is required for accumulation of salicylic acid, activation of defense responses and resistance to Pseudomonas syringae. Jagadeeswaran G; Raina S; Acharya BR; Maqbool SB; Mosher SL; Appel HM; Schultz JC; Klessig DF; Raina R Plant J; 2007 Jul; 51(2):234-46. PubMed ID: 17521413 [TBL] [Abstract][Full Text] [Related]
9. The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Nobuta K; Okrent RA; Stoutemyer M; Rodibaugh N; Kempema L; Wildermuth MC; Innes RW Plant Physiol; 2007 Jun; 144(2):1144-56. PubMed ID: 17468220 [TBL] [Abstract][Full Text] [Related]
10. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Laurie-Berry N; Joardar V; Street IH; Kunkel BN Mol Plant Microbe Interact; 2006 Jul; 19(7):789-800. PubMed ID: 16838791 [TBL] [Abstract][Full Text] [Related]
12. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Ferrari S; Plotnikova JM; De Lorenzo G; Ausubel FM Plant J; 2003 Jul; 35(2):193-205. PubMed ID: 12848825 [TBL] [Abstract][Full Text] [Related]
13. WRKY55 transcription factor positively regulates leaf senescence and the defense response by modulating the transcription of genes implicated in the biosynthesis of reactive oxygen species and salicylic acid in Wang Y; Cui X; Yang B; Xu S; Wei X; Zhao P; Niu F; Sun M; Wang C; Cheng H; Jiang YQ Development; 2020 Aug; 147(16):. PubMed ID: 32680933 [TBL] [Abstract][Full Text] [Related]
14. Holaphyllamine, a steroid, is able to induce defense responses in Arabidopsis thaliana and increases resistance against bacterial infection. Zahid A; Jaber R; Laggoun F; Lehner A; Remy-Jouet I; Pamlard O; Beaupierre S; Leprince J; Follet-Gueye ML; Vicré-Gibouin M; Latour X; Richard V; Guillou C; Lerouge P; Driouich A; Mollet JC Planta; 2017 Dec; 246(6):1109-1124. PubMed ID: 28815300 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a novel, defense-related Arabidopsis mutant, cir1, isolated by luciferase imaging. Murray SL; Thomson C; Chini A; Read ND; Loake GJ Mol Plant Microbe Interact; 2002 Jun; 15(6):557-66. PubMed ID: 12059104 [TBL] [Abstract][Full Text] [Related]
16. Novel molecular components involved in callose-mediated Arabidopsis defense against Salmonella enterica and Escherichia coli O157:H7. Oblessuc PR; Matiolli CC; Melotto M BMC Plant Biol; 2020 Jan; 20(1):16. PubMed ID: 31914927 [TBL] [Abstract][Full Text] [Related]
17. BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000. Yaeno T; Iba K Plant Physiol; 2008 Oct; 148(2):1032-41. PubMed ID: 18753285 [TBL] [Abstract][Full Text] [Related]
19. Proteomics and functional analyses of Arabidopsis nitrilases involved in the defense response to microbial pathogens. Choi du S; Lim CW; Hwang BK Planta; 2016 Aug; 244(2):449-65. PubMed ID: 27095107 [TBL] [Abstract][Full Text] [Related]
20. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. Zheng Z; Mosher SL; Fan B; Klessig DF; Chen Z BMC Plant Biol; 2007 Jan; 7():2. PubMed ID: 17214894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]