BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 30087440)

  • 1. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry.
    Steinkühler J; De Tillieux P; Knorr RL; Lipowsky R; Dimova R
    Sci Rep; 2018 Aug; 8(1):11838. PubMed ID: 30087440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroformation of giant unilamellar vesicles in saline solution.
    Li Q; Wang X; Ma S; Zhang Y; Han X
    Colloids Surf B Biointerfaces; 2016 Nov; 147():368-375. PubMed ID: 27566225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions.
    Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G
    Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AC-electric field dependent electroformation of giant lipid vesicles.
    Politano TJ; Froude VE; Jing B; Zhu Y
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):75-82. PubMed ID: 20413284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the size of electroformed giant unilamellar vesicle using response surface methodology.
    Ghellab SE; Mu W; Li Q; Han X
    Biophys Chem; 2019 Oct; 253():106217. PubMed ID: 31306917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation.
    Boban Z; Puljas A; Kovač D; Subczynski WK; Raguz M
    Cell Biochem Biophys; 2020 Jun; 78(2):157-164. PubMed ID: 32319021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant unilamellar vesicles electroformed from native membranes and organic lipid mixtures under physiological conditions.
    Montes LR; Alonso A; Goñi FM; Bagatolli LA
    Biophys J; 2007 Nov; 93(10):3548-54. PubMed ID: 17704162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bending Rigidity, Capacitance, and Shear Viscosity of Giant Vesicle Membranes Prepared by Spontaneous Swelling, Electroformation, Gel-Assisted, and Phase Transfer Methods: A Comparative Study.
    Faizi HA; Tsui A; Dimova R; Vlahovska PM
    Langmuir; 2022 Aug; 38(34):10548-10557. PubMed ID: 35993569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions.
    Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM
    Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayer Charge Asymmetry and Oil Residues Destabilize Membranes upon Poration.
    Leomil FSC; Stephan M; Pramanik S; Riske KA; Dimova R
    Langmuir; 2024 Mar; 40(9):4719-4731. PubMed ID: 38373285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electroformation protocol parameters on quality of homogeneous GUV populations.
    Drabik D; Doskocz J; Przybyło M
    Chem Phys Lipids; 2018 May; 212():88-95. PubMed ID: 29408045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micron-sized domains in quasi single-component giant vesicles.
    Knorr RL; Steinkühler J; Dimova R
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):1957-1964. PubMed ID: 29963995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing a fluorescence-based standard to quantify protein partitioning into membranes.
    Thomas FA; Visco I; Petrášek Z; Heinemann F; Schwille P
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2932-41. PubMed ID: 26342678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Enzyme Reaction Initiation inside Giant Unilamellar Vesicles by the Cell-Penetrating Peptide-Mediated Translocation of Cargo Proteins.
    Miwa A; Kamiya K
    ACS Synth Biol; 2022 Nov; 11(11):3836-3846. PubMed ID: 36197293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of proteins on electroformed giant unilamellar vesicles.
    Schmid EM; Richmond DL; Fletcher DA
    Methods Cell Biol; 2015; 128():319-38. PubMed ID: 25997355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies.
    Hasan M; Yamazaki M
    Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous detection of entry of cell-penetrating peptide transportan 10 into single vesicles.
    Moghal MMR; Islam MZ; Sharmin S; Levadnyy V; Moniruzzaman M; Yamazaki M
    Chem Phys Lipids; 2018 May; 212():120-129. PubMed ID: 29425855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient electroformation of supergiant unilamellar vesicles containing cationic lipids on ITO-coated electrodes.
    Herold C; Chwastek G; Schwille P; Petrov EP
    Langmuir; 2012 Apr; 28(13):5518-21. PubMed ID: 22424289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.