These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 30087598)

  • 1. Orientation and Contrast Tuning Properties and Temporal Flicker Fusion Characteristics of Primate Superior Colliculus Neurons.
    Chen CY; Hafed ZM
    Front Neural Circuits; 2018; 12():58. PubMed ID: 30087598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual feature tuning of superior colliculus neural reafferent responses after fixational microsaccades.
    Khademi F; Chen CY; Hafed ZM
    J Neurophysiol; 2020 Jun; 123(6):2136-2153. PubMed ID: 32347160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation and integration of multiple sensory inputs in primate superior colliculus.
    Wallace MT; Wilkinson LK; Stein BE
    J Neurophysiol; 1996 Aug; 76(2):1246-66. PubMed ID: 8871234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey.
    Bruce CJ; Desimone R; Gross CG
    J Neurophysiol; 1986 May; 55(5):1057-75. PubMed ID: 3711967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faster Detection of "Darks" than "Brights" by Monkey Superior Colliculus Neurons.
    Malevich T; Zhang T; Baumann MP; Bogadhi AR; Hafed ZM
    J Neurosci; 2022 Dec; 42(50):9356-9371. PubMed ID: 36319117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccades to somatosensory targets. III. eye-position-dependent somatosensory activity in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):439-53. PubMed ID: 8822569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of visual receptive field properties of the superior colliculus and primary visual cortex in rats.
    Li X; Sun C; Shi L
    Brain Res Bull; 2015 Aug; 117():69-80. PubMed ID: 26222378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural locus for spatial-frequency specific saccadic suppression in visual-motor neurons of the primate superior colliculus.
    Chen CY; Hafed ZM
    J Neurophysiol; 2017 Apr; 117(4):1657-1673. PubMed ID: 28100659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flicker in the visual background impairs the ability to process a moving visual stimulus.
    Churan J; Ilg UJ
    Eur J Neurosci; 2002 Sep; 16(6):1151-62. PubMed ID: 12383245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population encoding of spatial frequency, orientation, and color in macaque V1.
    Victor JD; Purpura K; Katz E; Mao B
    J Neurophysiol; 1994 Nov; 72(5):2151-66. PubMed ID: 7884450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsic reference frames of superior colliculus visuomotor receptive fields during head-unrestrained gaze shifts.
    DeSouza JF; Keith GP; Yan X; Blohm G; Wang H; Crawford JD
    J Neurosci; 2011 Dec; 31(50):18313-26. PubMed ID: 22171035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons.
    Cavanaugh JR; Bair W; Movshon JA
    J Neurophysiol; 2002 Nov; 88(5):2547-56. PubMed ID: 12424293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements.
    Walker MF; Fitzgibbon EJ; Goldberg ME
    J Neurophysiol; 1995 May; 73(5):1988-2003. PubMed ID: 7623096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Most superficial sublamina of rat superior colliculus: neuronal response properties and correlates with perceptual figure-ground segregation.
    Girman SV; Lund RD
    J Neurophysiol; 2007 Jul; 98(1):161-77. PubMed ID: 17475720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal structure of visual receptive fields in macaque superior colliculus.
    Churan J; Guitton D; Pack CC
    J Neurophysiol; 2012 Nov; 108(10):2653-67. PubMed ID: 22933722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial frequency sensitivity in macaque midbrain.
    Chen CY; Sonnenberg L; Weller S; Witschel T; Hafed ZM
    Nat Commun; 2018 Jul; 9(1):2852. PubMed ID: 30030440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys.
    Spear PD; Moore RJ; Kim CB; Xue JT; Tumosa N
    J Neurophysiol; 1994 Jul; 72(1):402-20. PubMed ID: 7965023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccades to somatosensory targets. II. motor convergence in primate superior colliculus.
    Groh JM; Sparks DL
    J Neurophysiol; 1996 Jan; 75(1):428-38. PubMed ID: 8822568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peri-Saccadic Orientation Identification Performance and Visual Neural Sensitivity Are Higher in the Upper Visual Field.
    Fracasso A; Buonocore A; Hafed ZM
    J Neurosci; 2023 Oct; 43(41):6884-6897. PubMed ID: 37640553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrast-dependent changes in spatial frequency tuning of macaque V1 neurons: effects of a changing receptive field size.
    Sceniak MP; Hawken MJ; Shapley R
    J Neurophysiol; 2002 Sep; 88(3):1363-73. PubMed ID: 12205157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.