These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3008813)

  • 1. Variations in the oxidation-reduction behavior of liganded species of Pseudomonas cytochrome oxidase.
    Carson SD; Ching YC; Wells CA; Wharton DC; Ondrias MR
    Biochemistry; 1986 Feb; 25(4):787-90. PubMed ID: 3008813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allosteric cooperative interactions among redox sites of Pseudomonas cytochrome oxidase.
    Blatt Y; Pecht I
    Biochemistry; 1979 Jun; 18(13):2917-22. PubMed ID: 224908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome oxidase from Pseudomonas aeruginosa. I. Reaction with copper protein.
    Wharton DC; Gudat JC; Gibson QH
    Biochim Biophys Acta; 1973 Apr; 292(3):611-20. PubMed ID: 4350258
    [No Abstract]   [Full Text] [Related]  

  • 4. Cytochrome oxidase from Pseudomonas aeruginosa. IV. Reaction with oxygen and carbon monoxide.
    Wharton DC; Gibson QH
    Biochim Biophys Acta; 1976 Jun; 430(3):445-53. PubMed ID: 181054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTIR studies of internal proton transfer reactions linked to inter-heme electron transfer in bovine cytochrome c oxidase.
    McMahon BH; Fabian M; Tomson F; Causgrove TP; Bailey JA; Rein FN; Dyer RB; Palmer G; Gennis RB; Woodruff WH
    Biochim Biophys Acta; 2004 Apr; 1655(1-3):321-31. PubMed ID: 15100047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The kinetics of electron transfer between pseudomonas aeruginosa cytochrome c-551 and its oxidase.
    Silvestrini MC; Tordi MG; Colosimo A; Antonini E; Brunori M
    Biochem J; 1982 May; 203(2):445-51. PubMed ID: 6288000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas aeruginosa cytochrome oxidase. Product inhibition by low thermodynamic driving force.
    Blatt Y; Pecht I
    Eur J Biochem; 1986 Oct; 160(1):149-53. PubMed ID: 3021448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation-reduction behavior of the heme c and heme d moieties of Pseudomonas aeruginosa nitrite reductase and the formation of an oxygenated intermediate at heme d1.
    Shimada H; Orii Y
    J Biochem; 1976 Jul; 80(1):135-40. PubMed ID: 823149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of Pseudomonas cytochrome oxidase by limited proteolysis with subtilisin.
    Horowitz PM; Falksen K; Muhoberac BB; Wharton DC
    J Biol Chem; 1982 Aug; 257(16):9258-60. PubMed ID: 6286610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-paramagnetic-resonance studies of structure and function of the two-haem enzymes Pseudomonas cytochrome c peroxidase and beef heart cytochrome c oxidase.
    Vänngård T
    Biochem Soc Trans; 1985 Jun; 13(3):619-22. PubMed ID: 2993075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies on cytochrome c oxidase by combined epr and reflectance spectroscopy after rapid freezing.
    Beinert H; Hansen RE; Hartzell CR
    Biochim Biophys Acta; 1976 Feb; 423(2):339-55. PubMed ID: 2321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reduction of Pseudomonas cytochrome c551 oxidase by chromous ions.
    Barber D; Parr SR; Greenwood C
    Biochem J; 1977 Jun; 163(3):629-32. PubMed ID: 195577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c-551 and azurin oxidation catalysed by Pseudomonas aeruginosa cytochrome oxidase. A steady-state kinetic study.
    Tordi MG; Silvestrini MC; Colosimo A; Tuttobello L; Brunori M
    Biochem J; 1985 Sep; 230(3):797-805. PubMed ID: 2998333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidation of Pseudomonas cytochrome c-551 oxidase by potassium ferricyanide.
    Barber D; Parr SR; Greenwood C
    Biochem J; 1978 Aug; 173(2):681-90. PubMed ID: 212017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme interactions in Pseudomonas cytochrome oxidase.
    Wharton DC; Hill K; Gibson QH
    Adv Exp Med Biol; 1976; 74():240-53. PubMed ID: 183469
    [No Abstract]   [Full Text] [Related]  

  • 16. Protonmotive cooperativity in cytochrome c oxidase.
    Papa S; Capitanio N; Capitanio G; Palese LL
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):95-105. PubMed ID: 15282180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reactions of Pseudomonas cytochrome c-551 oxidase with potassium cyanide.
    Barber D; Parr SR; Greenwood C
    Biochem J; 1978 Oct; 175(1):239-49. PubMed ID: 32876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and ligand binding evidence for two heme A-based terminal oxidases in plasma membranes from Bacillus subtilis.
    Hill BC; Vo L; Albanese J
    Arch Biochem Biophys; 1993 Feb; 301(1):129-37. PubMed ID: 8382904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some spectral and steady-state kinetic properties of Pseudomonas cytochrome oxidase.
    Barber D; Parr SR; Greenwood C
    Biochem J; 1976 Aug; 157(2):431-8. PubMed ID: 183751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.