BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 30088159)

  • 1. Computational studies on the hydride transfer barrier for the catalytic hydrogenation of CO
    Biswas S; Chowdhury A; Roy P; Pramanik A; Sarkar P
    J Mol Model; 2018 Aug; 24(9):224. PubMed ID: 30088159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel.
    Connelly Robinson SJ; Zall CM; Miller DL; Linehan JC; Appel AM
    Dalton Trans; 2016 Jun; 45(24):10017-23. PubMed ID: 27071366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the electronic effect of phosphine ligand on Rh catalyzed CO2 hydrogenation by investigating the reaction mechanism.
    Ni SF; Dang L
    Phys Chem Chem Phys; 2016 Feb; 18(6):4860-70. PubMed ID: 26804824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of Pendant Bases into Rh(diphosphine)2 Complexes: Synthesis, Thermodynamic Studies, And Catalytic CO2 Hydrogenation Activity of [Rh(P2N2)2](+) Complexes.
    Lilio AM; Reineke MH; Moore CE; Rheingold AL; Takase MK; Kubiak CP
    J Am Chem Soc; 2015 Jul; 137(25):8251-60. PubMed ID: 26042557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making a Splash in Homogeneous CO
    Wiedner ES; Linehan JC
    Chemistry; 2018 Nov; 24(64):16964-16971. PubMed ID: 29876973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control in the Rate-Determining Step Provides a Promising Strategy To Develop New Catalysts for CO2 Hydrogenation: A Local Pair Natural Orbital Coupled Cluster Theory Study.
    Mondal B; Neese F; Ye S
    Inorg Chem; 2015 Aug; 54(15):7192-8. PubMed ID: 26204267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Rational Design of 3d Transition Metal Catalysts for CO2 Hydrogenation Based on Insights into Hydricity-Controlled Rate-Determining Steps.
    Mondal B; Neese F; Ye S
    Inorg Chem; 2016 Jun; 55(11):5438-44. PubMed ID: 27163654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation.
    Fong H; Peters JC
    Inorg Chem; 2015 Jun; 54(11):5124-35. PubMed ID: 25549663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlating Thermodynamic and Kinetic Hydricities of Rhenium Hydrides.
    Espinosa MR; Ertem MZ; Barakat M; Bruch QJ; Deziel AP; Elsby MR; Hasanayn F; Hazari N; Miller AJM; Pecoraro MV; Smith AM; Smith NE
    J Am Chem Soc; 2022 Oct; 144(39):17939-17954. PubMed ID: 36130605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and Solvent Effects on H
    Hu J; Bruch QJ; Miller AJM
    J Am Chem Soc; 2021 Jan; 143(2):945-954. PubMed ID: 33383987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unexpected Direct Hydride Transfer Mechanism for the Hydrogenation of Ethyl Acetate to Ethanol Catalyzed by SNS Pincer Ruthenium Complexes.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Feb; 22(6):1950-1957. PubMed ID: 26751717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic targeting of electrocatalytic CO
    Ostericher AL; Porter TM; Reineke MH; Kubiak CP
    Dalton Trans; 2019 Nov; 48(42):15841-15848. PubMed ID: 31580359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unambiguous hydrogenation of CO
    Habib M; Sarkar R; Biswas S; Pramanik A; Sarkar P; Pal S
    Phys Chem Chem Phys; 2019 Apr; 21(14):7483-7490. PubMed ID: 30892323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renewable Hydride Donors for the Catalytic Reduction of CO
    Alherz A; Lim CH; Kuo YC; Lehman P; Cha J; Hynes JT; Musgrave CB
    J Phys Chem B; 2018 Nov; 122(44):10179-10189. PubMed ID: 30290115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic and kinetic hydricity of ruthenium(II) hydride complexes.
    Matsubara Y; Fujita E; Doherty MD; Muckerman JT; Creutz C
    J Am Chem Soc; 2012 Sep; 134(38):15743-57. PubMed ID: 22966971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoswitching a molecular catalyst to regulate CO2 hydrogenation.
    Priyadarshani N; Ginovska B; Bays JT; Linehan JC; Shaw WJ
    Dalton Trans; 2015 Sep; 44(33):14854-64. PubMed ID: 26223209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Iridium Complexes in Metal-Organic Frameworks Catalyze CO
    An B; Zeng L; Jia M; Li Z; Lin Z; Song Y; Zhou Y; Cheng J; Wang C; Lin W
    J Am Chem Soc; 2017 Dec; 139(49):17747-17750. PubMed ID: 29179548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Octaboraneyl [Ni(H)(diphosphine)
    Zurakowski JA; Bhattacharyya M; Spasyuk DM; Drover MW
    Inorg Chem; 2021 Jan; 60(1):37-41. PubMed ID: 33355442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic and kinetic hydricity of transition metal hydrides.
    Brereton KR; Smith NE; Hazari N; Miller AJM
    Chem Soc Rev; 2020 Nov; 49(22):7929-7948. PubMed ID: 32780072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.