BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30088159)

  • 21. Thermodynamic and kinetic hydricity of transition metal hydrides.
    Brereton KR; Smith NE; Hazari N; Miller AJM
    Chem Soc Rev; 2020 Nov; 49(22):7929-7948. PubMed ID: 32780072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How does the nickel pincer complex catalyze the conversion of CO2 to a methanol derivative? A computational mechanistic study.
    Huang F; Zhang C; Jiang J; Wang ZX; Guan H
    Inorg Chem; 2011 Apr; 50(8):3816-25. PubMed ID: 21413735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study.
    Chen HY; Di Tommaso D; Hogarth G; Catlow CR
    Dalton Trans; 2011 Jan; 40(2):402-12. PubMed ID: 21103602
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the catalytic transfer hydrogenation of nitroarenes by a cubane-type Mo
    Safont VS; Sorribes I; Andrés J; Llusar R; Oliva M; Ryzhikov MR
    Phys Chem Chem Phys; 2019 Aug; 21(31):17221-17231. PubMed ID: 31346590
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.
    McSkimming A; Chan B; Bhadbhade MM; Ball GE; Colbran SB
    Chemistry; 2015 Feb; 21(7):2821-34. PubMed ID: 25504622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Bimetallic Nickel-Gallium Complex Catalyzes CO
    Cammarota RC; Vollmer MV; Xie J; Ye J; Linehan JC; Burgess SA; Appel AM; Gagliardi L; Lu CC
    J Am Chem Soc; 2017 Oct; 139(40):14244-14250. PubMed ID: 28898066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of a catalyst through Fe doping of the boron cage B
    Qian L; Ma KY; Zhou ZJ; Ma F
    Phys Chem Chem Phys; 2017 Dec; 19(48):32723-32732. PubMed ID: 29199289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Triphosphine-Ligated Copper Hydrides for CO2 Hydrogenation: Structure, Reactivity, and Thermodynamic Studies.
    Zall CM; Linehan JC; Appel AM
    J Am Chem Soc; 2016 Aug; 138(31):9968-77. PubMed ID: 27434540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Explaining the Advantageous Impact of Tertiary versus Secondary Nitrogen Center on the Activity of PNP-Pincer Co(I)-Complexes for Catalytic Hydrogenation of CO
    Bothra N; Das S; Pati SK
    Chemistry; 2021 Nov; 27(66):16407-16414. PubMed ID: 34636450
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new and different insight into the promotion mechanisms of Ga for the hydrogenation of carbon dioxide to methanol over a Ga-doped Ni(211) bimetallic catalyst.
    Tang Q; Ji W; Russell CK; Zhang Y; Fan M; Shen Z
    Nanoscale; 2019 May; 11(20):9969-9979. PubMed ID: 31070648
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aqueous Hydricity of Late Metal Catalysts as a Continuum Tuned by Ligands and the Medium.
    Pitman CL; Brereton KR; Miller AJ
    J Am Chem Soc; 2016 Feb; 138(7):2252-60. PubMed ID: 26777267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphine-free ruthenium NCN-ligand complexes and their use in catalytic CO
    Sung MMH; Prokopchuk DE; Morris RH
    Dalton Trans; 2019 Nov; 48(44):16569-16577. PubMed ID: 31560363
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical study of reactivity of Ge(II)-hydride compound: comparison with Rh(I)-hydride complex and prediction of full catalytic cycle by Ge(II)-hydride.
    Takagi N; Sakaki S
    J Am Chem Soc; 2013 Jun; 135(24):8955-65. PubMed ID: 23700972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emerging Implications of the Concept of Hydricity in Energy-Relevant Catalytic Processes.
    Kumar A; Semwal S; Choudhury J
    Chemistry; 2021 Apr; 27(19):5842-5857. PubMed ID: 33236805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamic Hydricity of Transition Metal Hydrides.
    Wiedner ES; Chambers MB; Pitman CL; Bullock RM; Miller AJ; Appel AM
    Chem Rev; 2016 Aug; 116(15):8655-92. PubMed ID: 27483171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aqueous Hydricity from Calculations of Reduction Potential and Acidity in Water.
    Brereton KR; Bellows SM; Fallah H; Lopez AA; Adams RM; Miller AJ; Jones WD; Cundari TR
    J Phys Chem B; 2016 Dec; 120(50):12911-12919. PubMed ID: 28002955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mechanistic investigation of the polymerization of ethylene catalyzed by neutral Ni(II) complexes derived from bulky anilinotropone ligands.
    Jenkins JC; Brookhart M
    J Am Chem Soc; 2004 May; 126(18):5827-42. PubMed ID: 15125675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and Thermodynamic Hydricity in Cobalt(triphosphine)(monophosphine) Hydrides.
    Kuehn MA; Fernandez W; Zall CM
    Inorg Chem; 2023 Jun; 62(22):8505-8518. PubMed ID: 37216471
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromium Complexes with Benzanellated N-heterocyclic Phosphenium Ligands - Synthesis, Reactivity and Application in Catalytic CO2 Reduction.
    Birchall N; Hennhöfer F; Nieger M; Gudat D
    Chemistry; 2024 Jun; ():e202401714. PubMed ID: 38860887
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic insights into catalytic h(2) oxidation by ni complexes containing a diphosphine ligand with a positioned amine base.
    Yang JY; Bullock RM; Shaw WJ; Twamley B; Fraze K; DuBois MR; DuBois DL
    J Am Chem Soc; 2009 Apr; 131(16):5935-45. PubMed ID: 19341269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.