These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30088159)

  • 41. Thermodynamic and Kinetic Activity Descriptors for the Catalytic Hydrogenation of Ketones.
    Chirila A; Hu Y; Linehan JC; Dixon DA; Wiedner ES
    J Am Chem Soc; 2024 Mar; 146(10):6866-6879. PubMed ID: 38437011
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Behaviour of [PdH(dppe)2]X (X=CF3SO3-, SbF6-, BF4-) as proton or hydride donor: relevance to catalysis.
    Aresta M; Dibenedetto A; Pápai I; Schubert G; Macchioni A; Zuccaccia D
    Chemistry; 2004 Aug; 10(15):3708-16. PubMed ID: 15281154
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calculation of thermodynamic hydricities and the design of hydride donors for CO2 reduction.
    Muckerman JT; Achord P; Creutz C; Polyansky DE; Fujita E
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15657-62. PubMed ID: 22826261
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changing the Mechanism for CO
    Burgess SA; Appel AM; Linehan JC; Wiedner ES
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):15002-15005. PubMed ID: 28961358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of Alkaline-Earth Metal-Catalyst: A Theoretical Study of Pyridines Hydroboration.
    Li Y; Wu M; Chen H; Xu D; Qu L; Zhang J; Bai R; Lan Y
    Front Chem; 2019; 7():149. PubMed ID: 30972320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic Hydrogenation of CO
    Kanega R; Onishi N; Tanaka S; Kishimoto H; Himeda Y
    J Am Chem Soc; 2021 Jan; 143(3):1570-1576. PubMed ID: 33439639
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydricity, electrochemistry, and excited-state chemistry of Ir complexes for CO
    Manbeck GF; Garg K; Shimoda T; Szalda DJ; Ertem MZ; Muckerman JT; Fujita E
    Faraday Discuss; 2017 Jun; 198():301-317. PubMed ID: 28280836
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Striking Differences in Properties of Geometric Isomers of [Ir(tpy)(ppy)H](+): Experimental and Computational Studies of their Hydricities, Interaction with CO2, and Photochemistry.
    Garg K; Matsubara Y; Ertem MZ; Lewandowska-Andralojc A; Sato S; Szalda DJ; Muckerman JT; Fujita E
    Angew Chem Int Ed Engl; 2015 Nov; 54(47):14128-32. PubMed ID: 26427767
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Iridicycle-Catalysed Imine Reduction: An Experimental and Computational Study of the Mechanism.
    Chen HY; Wang C; Wu X; Jiang X; Catlow CR; Xiao J
    Chemistry; 2015 Nov; 21(46):16564-77. PubMed ID: 26406610
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Density functional theory mechanistic study of the reduction of CO2 to CH4 catalyzed by an ammonium hydridoborate ion pair: CO2 activation via formation of a formic acid entity.
    Wen M; Huang F; Lu G; Wang ZX
    Inorg Chem; 2013 Oct; 52(20):12098-107. PubMed ID: 24087841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanistic insights into hydride transfer for catalytic hydrogenation of CO(2) with cobalt complexes.
    Kumar N; Camaioni DM; Dupuis M; Raugei S; Appel AM
    Dalton Trans; 2014 Aug; 43(31):11803-6. PubMed ID: 24946902
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanistic insight into effect of doping of Ni on CO
    Ou LH
    J Mol Model; 2016 Oct; 22(10):246. PubMed ID: 27678451
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synergistic Catalysis in Heterobimetallic Complexes for Homogeneous Carbon Dioxide Hydrogenation.
    Fickenscher ZBG; Lönnecke P; Müller AK; Hollóczki O; Kirchner B; Hey-Hawkins E
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Designing Catalytic Systems Using Binary Solvent Mixtures: Impact of Mole Fraction of Water on Hydride Transfer.
    Mayberry DD; Linehan JC; Appel AM
    Inorg Chem; 2021 Nov; 60(22):17132-17140. PubMed ID: 34723498
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide.
    Zhang P; Ni SF; Dang L
    Chem Asian J; 2016 Sep; 11(18):2528-36. PubMed ID: 27500596
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step.
    Ogo S; Kabe R; Hayashi H; Harada R; Fukuzumi S
    Dalton Trans; 2006 Oct; (39):4657-63. PubMed ID: 17028673
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Computational study on the mechanism of hydroboration of CO
    Ma N; Tu C; Xu Q; Guo W; Zhang J; Zhang G
    Dalton Trans; 2021 Mar; 50(8):2903-2914. PubMed ID: 33555280
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Light-driven reduction of CO
    Ostojić BD; Stanković B; Đorđević DS; Schwerdtfeger P
    Phys Chem Chem Phys; 2022 Aug; 24(34):20357-20370. PubMed ID: 35980288
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water-soluble and reusable Ru-NHC catalyst for aqueous-phase transfer hydrogenation of quinolines with formic acid.
    Maji B; Bhandari A; Sadhukhan R; Choudhury J
    Dalton Trans; 2022 May; 51(21):8258-8265. PubMed ID: 35579118
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.