BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 3008830)

  • 1. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae.
    Beattie DS; Clejan L
    Biochemistry; 1986 Mar; 25(6):1395-402. PubMed ID: 3008830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of cytochrome b in mitochondria from yeast lacking coenzyme Q.
    Clejan L; Beattie DS
    Biochemistry; 1986 Dec; 25(24):7984-91. PubMed ID: 3542040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria.
    Zhu QS; Beattie DS
    Biochim Biophys Acta; 1988 Jul; 934(3):303-13. PubMed ID: 2840117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct interaction between yeast NADH-ubiquinone oxidoreductase, succinate-ubiquinone oxidoreductase, and ubiquinol-cytochrome c oxidoreductase in the reduction of exogenous quinones.
    Zhu QS; Beattie DS
    J Biol Chem; 1988 Jan; 263(1):193-9. PubMed ID: 2826438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria.
    Beattie DS; Japa S; Howton M; Zhu QS
    Arch Biochem Biophys; 1992 Feb; 292(2):499-505. PubMed ID: 1309974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of coenzyme Q in the mitochondrial respiratory chain. Reconstitution of activity in coenzyme Q deficient mutants of yeast.
    Brown GG; Beattie DS
    Biochemistry; 1977 Oct; 16(20):4449-54. PubMed ID: 199236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transfer through center o of the cytochrome b-c1 complex of yeast mitochondria involves subunit VII, the ubiquinone-binding protein.
    Japa S; Beattie DS
    J Biol Chem; 1989 Aug; 264(24):13994-7. PubMed ID: 2547777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The respiratory chain in a ubiquinone-deficient mutant of Saccharomyces cerevisiae.
    De Kok J; Slater EC
    Biochim Biophys Acta; 1975 Jan; 376(1):27-41. PubMed ID: 235982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccharomyces cerevisiae coq10 null mutants are responsive to antimycin A.
    Busso C; Tahara EB; Ogusucu R; Augusto O; Ferreira-Junior JR; Tzagoloff A; Kowaltowski AJ; Barros MH
    FEBS J; 2010 Nov; 277(21):4530-8. PubMed ID: 20875086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of electron transfer from ferrocytochrome b to ubiquinone, cytochrome c1 and duroquinone by antimycin.
    VON Jagow G; Bohrer C
    Biochim Biophys Acta; 1975 Jun; 387(3):409-24. PubMed ID: 166667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid redox equilibrium between the mitochondrial Q pool and cytochrome b during triphasic reduction of cytochrome b by succinate.
    Chen M; Zhu QS
    Biochim Biophys Acta; 1986 Oct; 851(3):457-68. PubMed ID: 3019394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid reduction of cytochrome c1 in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain.
    Bowyer JR; Trumpower BL
    J Biol Chem; 1981 Mar; 256(5):2245-51. PubMed ID: 6257713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a missense exonic mutation in cytochrome b gene, observed on isolated mitochondrial complex III of Saccharomyces cerevisiae: consequence for the antimycin binding site.
    Chevillotte-Brivet P; Salou G; Forget N; Meunier-Lemesle D
    Biochimie; 1987 Jan; 69(1):25-36. PubMed ID: 3028506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of ring substituents on the mechanism of interaction of exogenous quinones with the mitochondrial respiratory chain.
    Chen M; Liu BL; Gu LQ; Zhu QS
    Biochim Biophys Acta; 1986 Oct; 851(3):469-74. PubMed ID: 3019395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquinol-cytochrome c oxidoreductase. The redox reactions of the bis-heme cytochrome b in ubiquinone-sufficient and ubiquinone-deficient systems.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1996 Mar; 271(11):6164-71. PubMed ID: 8626405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of exogenous quinones and 2,6-dichlorophenol indophenol in cytochrome b-deficient yeast mitochondria: a differential effect on center i and center o of the cytochrome b-c1 complex.
    Zhu QS; Sprague SG; Beattie DS
    Arch Biochem Biophys; 1988 Sep; 265(2):447-53. PubMed ID: 2844120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy transduction by the reconstituted b-c1 complex from yeast mitochondria. Inhibitory effects of dicyclohexylcarbodiimide.
    Beattie DS; Villalobo A
    J Biol Chem; 1982 Dec; 257(24):14745-52. PubMed ID: 6294076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triphasic reduction of cytochrome b and the protonmotive Q cycle pathway of electron transfer in the cytochrome bc1 complex of the mitochondrial respiratory chain.
    Tang HL; Trumpower BL
    J Biol Chem; 1986 May; 261(14):6209-15. PubMed ID: 3009448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic evidence for coenzyme Q requirement in plasma membrane electron transport.
    Santos-Ocaña C; Villalba JM; Córdoba F; Padilla S; Crane FL; Clarke CF; Navas P
    J Bioenerg Biomembr; 1998 Oct; 30(5):465-75. PubMed ID: 9932649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oxidation of external NADH by an intermembrane electron transfer in mitochondria from the ubiquinone-deficient mutant E3-24 of Saccharomyces cerevisiae.
    De Santis A; Melandri BA
    Arch Biochem Biophys; 1984 Jul; 232(1):354-65. PubMed ID: 6378098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.