BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3008837)

  • 1. Changes in membrane polypeptides, polyphosphoinositides and phosphatidate in dense fractions of sickle cells.
    Raval PJ; Allan D
    Biochim Biophys Acta; 1986 Apr; 856(3):595-601. PubMed ID: 3008837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-induced changes in polyphosphoinositides and phosphatidate in normal erythrocytes, sickle cells and hereditary pyropoikilocytes.
    Ponnappa BC; Greenquist AC; Shohet SB
    Biochim Biophys Acta; 1980 Jun; 598(3):494-501. PubMed ID: 6248110
    [No Abstract]   [Full Text] [Related]  

  • 3. Cell-bound autologous immunoglobulin in erythrocyte subpopulations from patients with sickle cell disease.
    Green GA; Rehn MM; Kalra VK
    Blood; 1985 May; 65(5):1127-33. PubMed ID: 3888304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Ca2+-dependent biochemical changes in the ageing process in normal red cells and in the development of irreversibly sickled cells.
    Allan D; Raval PJ
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1987; 114(4):499-503. PubMed ID: 2446988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cell [14C]cholesterol exchange and plasma cholesterol esterifying activity of normal and sickle cell blood.
    Jain SK; Shohet SB
    Biochim Biophys Acta; 1982 May; 688(1):11-5. PubMed ID: 7093267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane components in the red cells of patients with sickle cell anemia. Relationship to cell aging and to irreversibility of sickling.
    Westerman MP; Diloy-Puray M; Streczyn M
    Biochim Biophys Acta; 1979 Oct; 557(1):149-55. PubMed ID: 549632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous calcium in sickle cells does not activate polyphosphoinositide phospholipase C.
    Rhoda MD; Sulpice JC; Gascard P; Galacteros F; Giraud F
    Biochem J; 1988 Aug; 254(1):161-9. PubMed ID: 2845944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-bound hemichrome in density-separated cohorts of normal (AA) and sickled (SS) cells.
    Campwala HQ; Desforges JF
    J Lab Clin Med; 1982 Jan; 99(1):25-8. PubMed ID: 7054348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organizational differences in the membrane proteins of normal and irreversibly sickled erythrocytes.
    Rubin RW; Milikowski C; Wise GE
    Biochim Biophys Acta; 1980; 595(1):1-8. PubMed ID: 7349873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phosphoproteins of the sickle erythrocyte membrane.
    Johnson RM; Dzandu JK; Warth JA
    Arch Biochem Biophys; 1986 Jan; 244(1):202-10. PubMed ID: 3947058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in polyphosphoinositides and phosphatidic acid of erythrocyte membranes in diabetes.
    Kamada T; McMillan DE; Otsuji S
    Diabetes Res Clin Pract; 1992 May; 16(2):85-90. PubMed ID: 1318189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erythrocyte membrane vesicles and irreversibly sickled cells bind protein S.
    Lane PA; O'Connell JL; Marlar RA
    Am J Hematol; 1994 Dec; 47(4):295-300. PubMed ID: 7977302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. Evidence from rotational and lateral mobility studies.
    Corbett JD; Golan DE
    J Clin Invest; 1993 Jan; 91(1):208-17. PubMed ID: 8423219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte membrane lipid reorganization during the sickling process.
    Chiu D; Lubin B; Shohet SB
    Br J Haematol; 1979 Feb; 41(2):223-34. PubMed ID: 427032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microvesicles from sickle erythrocytes and their relation to irreversible sickling.
    Allan D; Limbrick AR; Thomas P; Westerman MP
    Br J Haematol; 1981 Mar; 47(3):383-90. PubMed ID: 6779851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a direct reticulocyte origin of dense red cells in sickle cell anemia.
    Bookchin RM; Ortiz OE; Lew VL
    J Clin Invest; 1991 Jan; 87(1):113-24. PubMed ID: 1702096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of light irreversibly sickled cells during deoxygenation-oxygenation cycles.
    Horiuchi K; Asakura T
    J Lab Clin Med; 1987 Nov; 110(5):653-60. PubMed ID: 3668362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells.
    Franck PF; Bevers EM; Lubin BH; Comfurius P; Chiu DT; Op den Kamp JA; Zwaal RF; van Deenen LL; Roelofsen B
    J Clin Invest; 1985 Jan; 75(1):183-90. PubMed ID: 3965502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The fatty acid composition of 1,2-diacylglycerol and polyphosphoinositides from human erythrocyte membranes.
    Allan D; Cockcroft S
    Biochem J; 1983 Aug; 213(2):555-7. PubMed ID: 6311167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An acetylation method for the quantification of membrane lipids, including phospholipids, polyphosphoinositides and cholesterol.
    Stein JM; Smith GA; Luzio JP
    Biochem J; 1991 Mar; 274 ( Pt 2)(Pt 2):375-9. PubMed ID: 1848754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.