BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3008872)

  • 1. Complete analysis of the cytochrome components of beef heart mitochondria in terms of spectra and redox properties. Cytochromes aa3.
    Reddy KV; Hendler RW; Bunow B
    Biophys J; 1986 Mar; 49(3):705-15. PubMed ID: 3008872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the spectra and redox properties of pure cytochromes aa3.
    Hendler RW; Reddy KV; Shrager RI; Caughey WS
    Biophys J; 1986 Mar; 49(3):717-29. PubMed ID: 3008873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete analysis of the cytochrome components of beef heart mitochondria in terms of spectra and redox properties. The c1-cytochromes.
    Reddy KV; Hendler RW
    Biophys J; 1986 Mar; 49(3):693-703. PubMed ID: 3008871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complete analysis of the cytochrome components of beef heart mitochondria in terms of spectra and redox properties. The b-type cytochromes.
    Reddy KV; Hendler RW
    J Biol Chem; 1983 Jul; 258(14):8568-81. PubMed ID: 6863301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton interactions with hemes a and a3 in bovine heart cytochrome c oxidase.
    Parul D; Palmer G; Fabian M
    Biochemistry; 2005 Mar; 44(11):4562-71. PubMed ID: 15766287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near infrared spectral changes of cytochrome aa3 during potentiometric titrations.
    Hendler RW; Harmon PA; Levin IW
    Biophys J; 1994 Dec; 67(6):2493-500. PubMed ID: 7696488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions.
    Blair DF; Ellis WR; Wang H; Gray HB; Chan SI
    J Biol Chem; 1986 Sep; 261(25):11524-37. PubMed ID: 3017934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of two low Em forms of cytochrome a3 and their carbon monoxide complexes in mammalian cytochrome c oxidase.
    Sidhu GS; Hendler RW
    Biophys J; 1990 Jun; 57(6):1125-40. PubMed ID: 2168220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of cytochrome a and a3 in yeast cells.
    Kuschmitz D; Hess B
    Hoppe Seylers Z Physiol Chem; 1975 Jul; 356(7):1139-49. PubMed ID: 172424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Redox-dependent protonation of cytochrome oxidase hemes in submitochondrial particles of the bovine heart].
    Artsatbanov VIu; Grigor'ev VA; Konstantinov AA
    Biokhimiia; 1983 Jan; 48(1):46-53. PubMed ID: 6299407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new high potential redox transition for cytochrome aa3.
    Hendler RW; Sidhu GS
    Biophys J; 1988 Jul; 54(1):121-33. PubMed ID: 2843243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The "ferrous-oxy" intermediate in the reaction of dioxygen with fully reduced cytochromes aa3 and bo3.
    Verkhovsky MI; Morgan JE; Puustinen A; Wikström M
    Biochemistry; 1996 Dec; 35(50):16241-6. PubMed ID: 8973197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods.
    Dodson ED; Zhao XJ; Caughey WS; Elliott CM
    Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron redistribution in mixed valence cytochrome oxidase following photolysis of carboxy-oxidase.
    Harmon HJ
    J Bioenerg Biomembr; 1988 Dec; 20(6):735-48. PubMed ID: 2854130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of proton translocation in the oxidative and reductive phases of the catalytic cycle of cytochrome c oxidase. The role of H2O produced at the oxygen-reduction site.
    Capitanio G; Martino PL; Capitanio N; De Nitto E; Papa S
    Biochemistry; 2006 Feb; 45(6):1930-7. PubMed ID: 16460039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic and ligand binding evidence for two heme A-based terminal oxidases in plasma membranes from Bacillus subtilis.
    Hill BC; Vo L; Albanese J
    Arch Biochem Biophys; 1993 Feb; 301(1):129-37. PubMed ID: 8382904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiometric and spectral studies with the two-subunit cytochrome aa3 from Paracoccus denitrificans. Comparison with the 13-subunit beef heart enzyme.
    Pardhasaradhi K; Ludwig B; Hendler RW
    Biophys J; 1991 Aug; 60(2):408-14. PubMed ID: 1655082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-linked protolytic reactions in soluble cytochrome-c oxidase from beef-heart mitochondria: redox Bohr effects.
    Capitanio N; Vygodina TV; Capitanio G; Konstantinov AA; Nicholls P; Papa S
    Biochim Biophys Acta; 1997 Jan; 1318(1-2):255-65. PubMed ID: 9030268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome redox states and respiratory control in mouse and beef heart mitochondria at steady-state levels of hypoxia.
    Harrison DK; Fasching M; Fontana-Ayoub M; Gnaiger E
    J Appl Physiol (1985); 2015 Nov; 119(10):1210-8. PubMed ID: 26251509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.