These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 30089375)
1. Density functional approximations for orbital energies and total energies of molecules and solids. Baerends EJ J Chem Phys; 2018 Aug; 149(5):054105. PubMed ID: 30089375 [TBL] [Abstract][Full Text] [Related]
2. The Electron Affinity as the Highest Occupied Anion Orbital Energy with a Sufficiently Accurate Approximation of the Exact Kohn-Sham Potential. Amati M; Stoia S; Baerends EJ J Chem Theory Comput; 2020 Jan; 16(1):443-452. PubMed ID: 31794657 [TBL] [Abstract][Full Text] [Related]
3. The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies. Baerends EJ; Gritsenko OV; van Meer R Phys Chem Chem Phys; 2013 Oct; 15(39):16408-25. PubMed ID: 24002107 [TBL] [Abstract][Full Text] [Related]
4. From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach. Baerends EJ Phys Chem Chem Phys; 2017 Jun; 19(24):15639-15656. PubMed ID: 28604864 [TBL] [Abstract][Full Text] [Related]
5. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory. Zope RR; Dunlap BI J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149 [TBL] [Abstract][Full Text] [Related]
6. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations. van Meer R; Gritsenko OV; Baerends EJ J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140 [TBL] [Abstract][Full Text] [Related]
7. Comparison of DFT methods for molecular orbital eigenvalue calculations. Zhang G; Musgrave CB J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730 [TBL] [Abstract][Full Text] [Related]
8. Understanding band gaps of solids in generalized Kohn-Sham theory. Perdew JP; Yang W; Burke K; Yang Z; Gross EK; Scheffler M; Scuseria GE; Henderson TM; Zhang IY; Ruzsinszky A; Peng H; Sun J; Trushin E; Görling A Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2801-2806. PubMed ID: 28265085 [TBL] [Abstract][Full Text] [Related]
9. Approximating Quasiparticle and Excitation Energies from Ground State Generalized Kohn-Sham Calculations. Mei Y; Li C; Su NQ; Yang W J Phys Chem A; 2019 Jan; 123(3):666-673. PubMed ID: 30589546 [TBL] [Abstract][Full Text] [Related]
10. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity. Teale AM; De Proft F; Tozer DJ J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637 [TBL] [Abstract][Full Text] [Related]
11. Explanation of the Source of Very Large Errors in Many Exchange-Correlation Functionals for Vanadium Dimer. Zhang W; Truhlar DG; Tang M J Chem Theory Comput; 2014 Jun; 10(6):2399-409. PubMed ID: 26580760 [TBL] [Abstract][Full Text] [Related]
12. An improved Slater's transition state approximation. Hirao K; Nakajima T; Chan B J Chem Phys; 2021 Jul; 155(3):034101. PubMed ID: 34293872 [TBL] [Abstract][Full Text] [Related]
13. On the errors of local density (LDA) and generalized gradient (GGA) approximations to the Kohn-Sham potential and orbital energies. Gritsenko OV; Mentel ŁM; Baerends EJ J Chem Phys; 2016 May; 144(20):204114. PubMed ID: 27250286 [TBL] [Abstract][Full Text] [Related]
14. Koopmans-like approximation in the Kohn-Sham method and the impact of the frozen core approximation on the computation of the reactivity parameters of the density functional theory. Vargas R; Garza J; Cedillo A J Phys Chem A; 2005 Oct; 109(39):8880-92. PubMed ID: 16834292 [TBL] [Abstract][Full Text] [Related]
15. Single Excitation Energies Obtained from the Ensemble "HOMO-LUMO Gap": Exact Results and Approximations. Gould T; Hashimi Z; Kronik L; Dale SG J Phys Chem Lett; 2022 Mar; 13(10):2452-2458. PubMed ID: 35266399 [TBL] [Abstract][Full Text] [Related]
16. Direct mapping between exchange potentials of Hartree-Fock and Kohn-Sham schemes as origin of orbital proximity. Cinal M J Chem Phys; 2010 Jan; 132(1):014101. PubMed ID: 20078143 [TBL] [Abstract][Full Text] [Related]
17. The core ionization energies calculated by delta SCF and Slater's transition state theory. Hirao K; Nakajima T; Chan B; Lee HJ J Chem Phys; 2023 Feb; 158(6):064112. PubMed ID: 36792520 [TBL] [Abstract][Full Text] [Related]
18. Calculation of longitudinal polarizability and second hyperpolarizability of polyacetylene with the coupled perturbed Hartree-Fock/Kohn-Sham scheme: where it is shown how finite oligomer chains tend to the infinite periodic polymer. Lacivita V; Rèrat M; Orlando R; Ferrero M; Dovesi R J Chem Phys; 2012 Mar; 136(11):114101. PubMed ID: 22443743 [TBL] [Abstract][Full Text] [Related]