These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 30089833)
1. Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La Forslund RP; Hardin WG; Rong X; Abakumov AM; Filimonov D; Alexander CT; Mefford JT; Iyer H; Kolpak AM; Johnston KP; Stevenson KJ Nat Commun; 2018 Aug; 9(1):3150. PubMed ID: 30089833 [TBL] [Abstract][Full Text] [Related]
2. Self-Assembled Ruddlesden-Popper/Perovskite Hybrid with Lattice-Oxygen Activation as a Superior Oxygen Evolution Electrocatalyst. Zhu Y; Lin Q; Hu Z; Chen Y; Yin Y; Tahini HA; Lin HJ; Chen CT; Zhang X; Shao Z; Wang H Small; 2020 May; 16(20):e2001204. PubMed ID: 32309914 [TBL] [Abstract][Full Text] [Related]
3. Complex structural ordering of the oxygen deficiency in La González-Merchante D; Cortés-Gil R; Alonso JM; Matesanz E; Martínez JL; Rivera-Calzada A; Santamaría J; Ruiz-González ML; González-Calbet JM Acta Crystallogr A Found Adv; 2019 Jul; 75(Pt 4):644-651. PubMed ID: 31264648 [TBL] [Abstract][Full Text] [Related]
4. Regulating the Electronic Structure of Ruddlesden-Popper-Type Perovskite by Chlorine Doping for Enhanced Oxygen Evolution Activity. Li SF; Zhang BQ; Li YN; Yan D Inorg Chem; 2023 Jul; 62(28):11233-11239. PubMed ID: 37409591 [TBL] [Abstract][Full Text] [Related]
5. Dimensionality Control of Electrocatalytic Activity in Perovskite Nickelates. Cao C; Shang C; Li X; Wang Y; Liu C; Wang X; Zhou S; Zeng J Nano Lett; 2020 Apr; 20(4):2837-2842. PubMed ID: 32207976 [TBL] [Abstract][Full Text] [Related]
6. Unusual synergistic effect in layered Ruddlesden-Popper oxide enables ultrafast hydrogen evolution. Zhu Y; Tahini HA; Hu Z; Dai J; Chen Y; Sun H; Zhou W; Liu M; Smith SC; Wang H; Shao Z Nat Commun; 2019 Jan; 10(1):149. PubMed ID: 30635568 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Oxygen Reduction Activity on Ruddlesden-Popper Phase Decorated La Hong T; Zhao M; Brinkman K; Chen F; Xia C ACS Appl Mater Interfaces; 2017 Mar; 9(10):8659-8668. PubMed ID: 28181431 [TBL] [Abstract][Full Text] [Related]
8. Boosting Overall Water Splitting via FeOOH Nanoflake-Decorated PrBa Zhang Z; He B; Chen L; Wang H; Wang R; Zhao L; Gong Y ACS Appl Mater Interfaces; 2018 Nov; 10(44):38032-38041. PubMed ID: 30360054 [TBL] [Abstract][Full Text] [Related]
9. Activity and Stability of Ruddlesden-Popper-Type La(n+1) Ni(n) O(3n+1) (n=1, 2, 3, and ∞) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media. Yu J; Sunarso J; Zhu Y; Xu X; Ran R; Zhou W; Shao Z Chemistry; 2016 Feb; 22(8):2719-27. PubMed ID: 26788934 [TBL] [Abstract][Full Text] [Related]
10. Self-supported nickel-cobalt nanowires as highly efficient and stable electrocatalysts for overall water splitting. Xu H; Wei J; Zhang M; Wang J; Shiraishi Y; Tian L; Du Y Nanoscale; 2018 Oct; 10(39):18767-18773. PubMed ID: 30276398 [TBL] [Abstract][Full Text] [Related]
11. Nickel-Based Bicarbonates as Bifunctional Catalysts for Oxygen Evolution and Reduction Reaction in Alkaline Media. Gui L; Chen Y; He B; Li G; Xu J; Wang Q; Sun W; Zhao L Chemistry; 2018 Dec; 24(67):17665-17671. PubMed ID: 30193405 [TBL] [Abstract][Full Text] [Related]
12. In situ evolution of highly dispersed amorphous CoO Chen D; Dong CL; Zou Y; Su D; Huang YC; Tao L; Dou S; Shen S; Wang S Nanoscale; 2017 Aug; 9(33):11969-11975. PubMed ID: 28792057 [TBL] [Abstract][Full Text] [Related]
13. Engineering the strongly correlated properties of bulk Ruddlesden-Popper transition metal oxides via self-doping. Pham A; Li S Phys Chem Chem Phys; 2017 May; 19(18):11373-11379. PubMed ID: 28422209 [TBL] [Abstract][Full Text] [Related]
14. Dealloying-directed synthesis of efficient mesoporous CoFe-based catalysts towards the oxygen evolution reaction and overall water splitting. Han L; Dong C; Zhang C; Gao Y; Zhang J; Gao H; Wang Y; Zhang Z Nanoscale; 2017 Nov; 9(42):16467-16475. PubMed ID: 29063927 [TBL] [Abstract][Full Text] [Related]
15. In-situ local phase-transitioned MoSe Oh NK; Kim C; Lee J; Kwon O; Choi Y; Jung GY; Lim HY; Kwak SK; Kim G; Park H Nat Commun; 2019 Apr; 10(1):1723. PubMed ID: 30979877 [TBL] [Abstract][Full Text] [Related]
16. A Durable Ruddlesden-Popper Cathode for Protonic Ceramic Fuel Cells. Huan D; Zhang L; Li X; Xie Y; Shi N; Xue S; Xia C; Peng R; Lu Y ChemSusChem; 2020 Sep; 13(18):4994-5003. PubMed ID: 32671967 [TBL] [Abstract][Full Text] [Related]
17. Two orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba Chen G; Zhou W; Guan D; Sunarso J; Zhu Y; Hu X; Zhang W; Shao Z Sci Adv; 2017 Jun; 3(6):e1603206. PubMed ID: 28691090 [TBL] [Abstract][Full Text] [Related]
18. Correlation between oxygen evolution reaction activity and surface compositional evolution in epitaxial La Adiga P; Wang L; Wong C; Matthews BE; Bowden ME; Spurgeon SR; Sterbinsky GE; Blum M; Choi MJ; Tao J; Kaspar TC; Chambers SA; Stoerzinger KA; Du Y Nanoscale; 2023 Jan; 15(3):1119-1127. PubMed ID: 36594352 [TBL] [Abstract][Full Text] [Related]
19. Oxygen-Deficient Ruddlesden-Popper-Type Lanthanum Strontium Cuprate Doped with Bismuth as a Cathode for Solid Oxide Fuel Cells. Hu X; Li M; Xie Y; Yang Y; Wu X; Xia C ACS Appl Mater Interfaces; 2019 Jun; 11(24):21593-21602. PubMed ID: 31150195 [TBL] [Abstract][Full Text] [Related]
20. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Li H; Chen S; Zhang Y; Zhang Q; Jia X; Zhang Q; Gu L; Sun X; Song L; Wang X Nat Commun; 2018 Jun; 9(1):2452. PubMed ID: 29934572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]