BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 30089917)

  • 21. Eukaryotic-type elongator tRNAMet of Trypanosoma brucei becomes formylated after import into mitochondria.
    Tan TH; Bochud-Allemann N; Horn EK; Schneider A
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1152-7. PubMed ID: 11792845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural Insights into the Mechanism of Scanning and Start Codon Recognition in Eukaryotic Translation Initiation.
    Hinnebusch AG
    Trends Biochem Sci; 2017 Aug; 42(8):589-611. PubMed ID: 28442192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distinct pre-initiation steps in human mitochondrial translation.
    Khawaja A; Itoh Y; Remes C; Spåhr H; Yukhnovets O; Höfig H; Amunts A; Rorbach J
    Nat Commun; 2020 Jun; 11(1):2932. PubMed ID: 32522994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial initiation factor 2 of Trypanosoma brucei binds imported formylated elongator-type tRNA(Met).
    Charrière F; Tan TH; Schneider A
    J Biol Chem; 2005 Apr; 280(16):15659-65. PubMed ID: 15731104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The emerging role of rectified thermal fluctuations in initiator aa-tRNA- and start codon selection during translation initiation.
    Caban K; Gonzalez RL
    Biochimie; 2015 Jul; 114():30-8. PubMed ID: 25882682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yeast AEP3p is an accessory factor in initiation of mitochondrial translation.
    Lee C; Tibbetts AS; Kramer G; Appling DR
    J Biol Chem; 2009 Dec; 284(49):34116-25. PubMed ID: 19843529
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Cryo-EM structure of a complete 30S translation initiation complex from Escherichia coli.
    Julián P; Milon P; Agirrezabala X; Lasso G; Gil D; Rodnina MV; Valle M
    PLoS Biol; 2011 Jul; 9(7):e1001095. PubMed ID: 21750663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. AIMP3/p18 controls translational initiation by mediating the delivery of charged initiator tRNA to initiation complex.
    Kang T; Kwon NH; Lee JY; Park MC; Kang E; Kim HH; Kang TJ; Kim S
    J Mol Biol; 2012 Nov; 423(4):475-81. PubMed ID: 22867704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryo-EM study of start codon selection during archaeal translation initiation.
    Coureux PD; Lazennec-Schurdevin C; Monestier A; Larquet E; Cladière L; Klaholz BP; Schmitt E; Mechulam Y
    Nat Commun; 2016 Nov; 7():13366. PubMed ID: 27819266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular architecture of a eukaryotic translational initiation complex.
    Fernández IS; Bai XC; Hussain T; Kelley AC; Lorsch JR; Ramakrishnan V; Scheres SHW
    Science; 2013 Nov; 342(6160):1240585. PubMed ID: 24200810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cryo-EM study of an archaeal 30S initiation complex gives insights into evolution of translation initiation.
    Coureux PD; Lazennec-Schurdevin C; Bourcier S; Mechulam Y; Schmitt E
    Commun Biol; 2020 Feb; 3(1):58. PubMed ID: 32029867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eukaryotic initiator tRNA: finely tuned and ready for action.
    Kolitz SE; Lorsch JR
    FEBS Lett; 2010 Jan; 584(2):396-404. PubMed ID: 19925799
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of protein biosynthesis in mammalian mitochondria.
    Christian BE; Spremulli LL
    Biochim Biophys Acta; 2012; 1819(9-10):1035-54. PubMed ID: 22172991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Translation initiation with GUC codon in the archaeon Halobacterium salinarum: implications for translation of leaderless mRNA and strict correlation between translation initiation and presence of mRNA.
    Srinivasan G; Krebs MP; RajBhandary UL
    Mol Microbiol; 2006 Feb; 59(3):1013-24. PubMed ID: 16420368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for an active role of IF3mt in the initiation of translation in mammalian mitochondria.
    Christian BE; Spremulli LL
    Biochemistry; 2009 Apr; 48(15):3269-78. PubMed ID: 19239245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of the N- and C-terminal extensions on the activity of mammalian mitochondrial translational initiation factor 3.
    Bhargava K; Spremulli LL
    Nucleic Acids Res; 2005; 33(22):7011-8. PubMed ID: 16340009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation.
    Tucker EJ; Hershman SG; Köhrer C; Belcher-Timme CA; Patel J; Goldberger OA; Christodoulou J; Silberstein JM; McKenzie M; Ryan MT; Compton AG; Jaffe JD; Carr SA; Calvo SE; RajBhandary UL; Thorburn DR; Mootha VK
    Cell Metab; 2011 Sep; 14(3):428-34. PubMed ID: 21907147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of spermine on the initiation of mitochondrial protein synthesis.
    Christian BE; Haque ME; Spremulli LL
    Biochem Biophys Res Commun; 2010 Jan; 391(1):942-6. PubMed ID: 19962967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and Functional Insights into Human Re-initiation Complexes.
    Weisser M; Schäfer T; Leibundgut M; Böhringer D; Aylett CHS; Ban N
    Mol Cell; 2017 Aug; 67(3):447-456.e7. PubMed ID: 28732596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Late steps in bacterial translation initiation visualized using time-resolved cryo-EM.
    Kaledhonkar S; Fu Z; Caban K; Li W; Chen B; Sun M; Gonzalez RL; Frank J
    Nature; 2019 Jun; 570(7761):400-404. PubMed ID: 31108498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.