BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 30089917)

  • 61. Initiation factor 3-induced structural changes in the 30 S ribosomal subunit and in complexes containing tRNA(f)(Met) and mRNA.
    Shapkina TG; Dolan MA; Babin P; Wollenzien P
    J Mol Biol; 2000 Jun; 299(3):615-28. PubMed ID: 10835272
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins.
    Sharma MR; Koc EC; Datta PP; Booth TM; Spremulli LL; Agrawal RK
    Cell; 2003 Oct; 115(1):97-108. PubMed ID: 14532006
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mammalian mitochondrial initiation factor 2 supports yeast mitochondrial translation without formylated initiator tRNA.
    Tibbetts AS; Oesterlin L; Chan SY; Kramer G; Hardesty B; Appling DR
    J Biol Chem; 2003 Aug; 278(34):31774-80. PubMed ID: 12799364
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Mitochondrial translation in absence of local tRNA aminoacylation and methionyl tRNA Met formylation in Apicomplexa.
    Pino P; Aeby E; Foth BJ; Sheiner L; Soldati T; Schneider A; Soldati-Favre D
    Mol Microbiol; 2010 May; 76(3):706-18. PubMed ID: 20374492
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Long-range interdomain communications in eIF5B regulate GTP hydrolysis and translation initiation.
    Huang BY; Fernández IS
    Proc Natl Acad Sci U S A; 2020 Jan; 117(3):1429-1437. PubMed ID: 31900355
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Initiation of mRNA translation in bacteria: structural and dynamic aspects.
    Gualerzi CO; Pon CL
    Cell Mol Life Sci; 2015 Nov; 72(22):4341-67. PubMed ID: 26259514
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Architecture of the large subunit of the mammalian mitochondrial ribosome.
    Greber BJ; Boehringer D; Leitner A; Bieri P; Voigts-Hoffmann F; Erzberger JP; Leibundgut M; Aebersold R; Ban N
    Nature; 2014 Jan; 505(7484):515-9. PubMed ID: 24362565
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Translation initiation in mammalian mitochondria- a prokaryotic perspective.
    Ayyub SA; Varshney U
    RNA Biol; 2020 Feb; 17(2):165-175. PubMed ID: 31696767
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Unfolding of mRNA secondary structure by the bacterial translation initiation complex.
    Studer SM; Joseph S
    Mol Cell; 2006 Apr; 22(1):105-15. PubMed ID: 16600874
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The interaction of mitochondrial translational initiation factor 2 with the small ribosomal subunit.
    Spencer AC; Spremulli LL
    Biochim Biophys Acta; 2005 Jun; 1750(1):69-81. PubMed ID: 15935986
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography.
    Englmeier R; Pfeffer S; Förster F
    Structure; 2017 Oct; 25(10):1574-1581.e2. PubMed ID: 28867615
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Initiation factor 2 stabilizes the ribosome in a semirotated conformation.
    Ling C; Ermolenko DN
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15874-9. PubMed ID: 26668356
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structural insight into the recognition of amino-acylated initiator tRNA by eIF5B in the 80S initiation complex.
    Kuhle B; Ficner R
    BMC Struct Biol; 2014 Sep; 14():20. PubMed ID: 25350701
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The scanning mechanism of eukaryotic translation initiation.
    Hinnebusch AG
    Annu Rev Biochem; 2014; 83():779-812. PubMed ID: 24499181
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanistic insights into the alternative translation termination by ArfA and RF2.
    Ma C; Kurita D; Li N; Chen Y; Himeno H; Gao N
    Nature; 2017 Jan; 541(7638):550-553. PubMed ID: 27906160
    [TBL] [Abstract][Full Text] [Related]  

  • 76. eIF2A, an initiator tRNA carrier refractory to eIF2α kinases, functions synergistically with eIF5B.
    Kim E; Kim JH; Seo K; Hong KY; An SWA; Kwon J; Lee SV; Jang SK
    Cell Mol Life Sci; 2018 Dec; 75(23):4287-4300. PubMed ID: 30019215
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex.
    Llácer JL; Hussain T; Marler L; Aitken CE; Thakur A; Lorsch JR; Hinnebusch AG; Ramakrishnan V
    Mol Cell; 2015 Aug; 59(3):399-412. PubMed ID: 26212456
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evolution and the universality of the mechanism of initiation of protein synthesis.
    Nakamoto T
    Gene; 2009 Mar; 432(1-2):1-6. PubMed ID: 19056476
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Leaderless mRNAs in bacteria: surprises in ribosomal recruitment and translational control.
    Moll I; Grill S; Gualerzi CO; Bläsi U
    Mol Microbiol; 2002 Jan; 43(1):239-46. PubMed ID: 11849551
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways.
    López-Alonso JP; Fabbretti A; Kaminishi T; Iturrioz I; Brandi L; Gil-Carton D; Gualerzi CO; Fucini P; Connell SR
    Nucleic Acids Res; 2017 Feb; 45(4):2179-2187. PubMed ID: 27986852
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.