BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 30090110)

  • 1. On-The-Go Hyperspectral Imaging Under Field Conditions and Machine Learning for the Classification of Grapevine Varieties.
    Gutiérrez S; Fernández-Novales J; Diago MP; Tardaguila J
    Front Plant Sci; 2018; 9():1102. PubMed ID: 30090110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer.
    Gutiérrez S; Tardaguila J; Fernández-Novales J; Diago MP
    PLoS One; 2015; 10(11):e0143197. PubMed ID: 26600316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data Mining and NIR Spectroscopy in Viticulture: Applications for Plant Phenotyping under Field Conditions.
    Gutiérrez S; Tardaguila J; Fernández-Novales J; Diago MP
    Sensors (Basel); 2016 Feb; 16(2):236. PubMed ID: 26891304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scenario-based discrimination of common grapevine varieties using in-field hyperspectral data in the western of Iran.
    Mirzaei M; Marofi S; Abbasi M; Solgi E; Karimi R; Verrelst J
    Int J Appl Earth Obs Geoinf; 2019 Aug; 80():26-37. PubMed ID: 36081710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks.
    Książek K; Romaszewski M; Głomb P; Grabowski B; Cholewa M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vineyard water status assessment using on-the-go thermal imaging and machine learning.
    Gutiérrez S; Diago MP; Fernández-Novales J; Tardaguila J
    PLoS One; 2018; 13(2):e0192037. PubMed ID: 29389982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning.
    Nguyen C; Sagan V; Maimaitiyiming M; Maimaitijiang M; Bhadra S; Kwasniewski MT
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33499335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer.
    Tardaguila J; Fernández-Novales J; Gutiérrez S; Diago MP
    J Sci Food Agric; 2017 Aug; 97(11):3772-3780. PubMed ID: 28133743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning in the classification of asian rust severity in soybean using hyperspectral sensor.
    Santana DC; Otone JDQ; Baio FHR; Teodoro LPR; Alves MEM; Junior CADS; Teodoro PE
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 313():124113. PubMed ID: 38447444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adoption of Machine Learning in Intelligent Terrain Classification of Hyperspectral Remote Sensing Images.
    Li Y; Wang J; Gao T; Sun Q; Zhang L; Tang M
    Comput Intell Neurosci; 2020; 2020():8886932. PubMed ID: 32952545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean.
    Yoosefzadeh-Najafabadi M; Earl HJ; Tulpan D; Sulik J; Eskandari M
    Front Plant Sci; 2020; 11():624273. PubMed ID: 33510761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Identification of varieties of black bean using ground based hyperspectral imaging].
    Zhang C; Liu F; Zhang HL; Kong WW; He Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Mar; 34(3):746-50. PubMed ID: 25208405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Grape Sugar Content under Quality Attributes Using Normalized Difference Vegetation Index Data and Automated Machine Learning.
    Kasimati A; Espejo-García B; Darra N; Fountas S
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions.
    Diago MP; Correa C; Millán B; Barreiro P; Valero C; Tardaguila J
    Sensors (Basel); 2012 Dec; 12(12):16988-7006. PubMed ID: 23235443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on nondestructive identification of grape varieties based on EEMD-DWT and hyperspectral image.
    Xu M; Sun J; Zhou X; Tang N; Shen J; Wu X
    J Food Sci; 2021 May; 86(5):2011-2023. PubMed ID: 33885160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning classification of origins and varieties of Tetrastigma hemsleyanum using a dual-mode microscopic hyperspectral imager.
    Jiao C; Xu Z; Bian Q; Forsberg E; Tan Q; Peng X; He S
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120054. PubMed ID: 34119773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of
    Wu N; Zhang C; Bai X; Du X; He Y
    Molecules; 2018 Oct; 23(11):. PubMed ID: 30384477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variety Identification of Raisins Using Near-Infrared Hyperspectral Imaging.
    Feng L; Zhu S; Zhang C; Bao Y; Gao P; He Y
    Molecules; 2018 Nov; 23(11):. PubMed ID: 30412997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Non-Invasive Method Based on Computer Vision for Grapevine Cluster Compactness Assessment Using a Mobile Sensing Platform under Field Conditions.
    Palacios F; Diago MP; Tardaguila J
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31480754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.