These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30090110)

  • 41. Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola.
    Oerke EC; Herzog K; Toepfer R
    J Exp Bot; 2016 Oct; 67(18):5529-5543. PubMed ID: 27567365
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers.
    Zhu H; Chu B; Zhang C; Liu F; Jiang L; He Y
    Sci Rep; 2017 Jun; 7(1):4125. PubMed ID: 28646177
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment.
    Detmer FJ; Lückehe D; Mut F; Slawski M; Hirsch S; Bijlenga P; von Voigt G; Cebral JR
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):141-150. PubMed ID: 31485987
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of machine learning and traditional classifiers in glaucoma diagnosis.
    Chan K; Lee TW; Sample PA; Goldbaum MH; Weinreb RN; Sejnowski TJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):963-74. PubMed ID: 12214886
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of Deep Learning Architectures for Accurate and Rapid Detection of Internal Mechanical Damage of Blueberry Using Hyperspectral Transmittance Data.
    Wang Z; Hu M; Zhai G
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642454
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing host-pathogen phenotyping dynamics: early detection of tomato bacterial diseases using hyperspectral point measurement and predictive modeling.
    Reis Pereira M; Dos Santos FN; Tavares F; Cunha M
    Front Plant Sci; 2023; 14():1242201. PubMed ID: 37662158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Performances of Hyperspectral Sensors for Proximal Sensing of Nitrogen Levels in Wheat.
    Liu H; Bruning B; Garnett T; Berger B
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823800
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of a 3D seed morphological tool for grapevine variety identification, and its comparison with SSR analysis.
    Karasik A; Rahimi O; David M; Weiss E; Drori E
    Sci Rep; 2018 Apr; 8(1):6545. PubMed ID: 29695830
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classification of Smoke Contaminated Cabernet Sauvignon Berries and Leaves Based on Chemical Fingerprinting and Machine Learning Algorithms.
    Summerson V; Gonzalez Viejo C; Szeto C; Wilkinson KL; Torrico DD; Pang A; De Bei R; Fuentes S
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32906800
    [TBL] [Abstract][Full Text] [Related]  

  • 50. UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring.
    Parsons M; Bratanov D; Gaston KJ; Gonzalez F
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29941801
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Seminal quality prediction using data mining methods.
    Sahoo AJ; Kumar Y
    Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Towards the automation of NIR spectroscopy to assess vineyard water status spatial-temporal variability from a ground moving vehicle.
    Fernández-Novales J; Barrio I; Diago MP
    Sci Rep; 2023 Aug; 13(1):13362. PubMed ID: 37591887
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hyperspectral remote sensing to detect leafminer-induced stress in bok choy and spinach according to fertilizer regime and timing.
    Nguyen HD; Nansen C
    Pest Manag Sci; 2020 Jun; 76(6):2208-2216. PubMed ID: 31970888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development and Validation of a New Methodology to Assess the Vineyard Water Status by On-the-Go Near Infrared Spectroscopy.
    Diago MP; Fernández-Novales J; Gutiérrez S; Marañón M; Tardaguila J
    Front Plant Sci; 2018; 9():59. PubMed ID: 29441086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probabilistic classification vector machines.
    Chen H; Tino P; Yao X
    IEEE Trans Neural Netw; 2009 Jun; 20(6):901-14. PubMed ID: 19398403
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of finite sample size on feature selection and classification: a simulation study.
    Way TW; Sahiner B; Hadjiiski LM; Chan HP
    Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Hyperspectral remote sensing image classification based on SVM optimized by clonal selection].
    Liu QJ; Jing LH; Wang MF; Lin QZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Mar; 33(3):746-51. PubMed ID: 23705446
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties.
    Carvalho A; Leal F; Matos M; Lima-Brito J
    Protoplasma; 2018 Nov; 255(6):1725-1740. PubMed ID: 29789939
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Image analysis-based modelling for flower number estimation in grapevine.
    Millan B; Aquino A; Diago MP; Tardaguila J
    J Sci Food Agric; 2017 Feb; 97(3):784-792. PubMed ID: 27173452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.