These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 30090257)
1. Uranium and thorium complexes of the phosphaethynolate ion. Camp C; Settineri N; Lefèvre J; Jupp AR; Goicoechea JM; Maron L; Arnold J Chem Sci; 2015 Nov; 6(11):6379-6384. PubMed ID: 30090257 [TBL] [Abstract][Full Text] [Related]
2. Trapping of a Highly Bent and Reduced Form of 2-Phosphaethynolate in a Mixed-Valence Diuranium-Triamidoamine Complex. Magnall R; Balázs G; Lu E; Tuna F; Wooles AJ; Scheer M; Liddle ST Angew Chem Int Ed Engl; 2019 Jul; 58(30):10215-10219. PubMed ID: 31125153 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of Trapen Ligand-Based U(IV) and Th(IV) 2-Phosphaethynolate Complexes and Comparison of Covalency with Corresponding Ti(IV) Analogues. Liu K; Chi XW; Guo Y; Wu QY; Hu KQ; Mei L; Chai ZF; Yu JP; Shi WQ Inorg Chem; 2022 Nov; 61(45):17993-18001. PubMed ID: 36330783 [TBL] [Abstract][Full Text] [Related]
4. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes. Ward AL; Lukens WW; Lu CC; Arnold J J Am Chem Soc; 2014 Mar; 136(9):3647-54. PubMed ID: 24498862 [TBL] [Abstract][Full Text] [Related]
5. The "Hidden" Reductive [2+2+1]-Cycloaddition Chemistry of 2-Phosphaethynolate Revealed by Reduction of a Th-OCP Linkage. Du J; Balázs G; Wooles AJ; Scheer M; Liddle ST Angew Chem Int Ed Engl; 2021 Jan; 60(3):1197-1202. PubMed ID: 33051949 [TBL] [Abstract][Full Text] [Related]
6. Small molecule activation by uranium tris(aryloxides): experimental and computational studies of binding of N2, coupling of CO, and deoxygenation insertion of CO2 under ambient conditions. Mansell SM; Kaltsoyannis N; Arnold PL J Am Chem Soc; 2011 Jun; 133(23):9036-51. PubMed ID: 21591662 [TBL] [Abstract][Full Text] [Related]
7. Experimental and Computational Studies on the Formation of Thorium-Copper Heterobimetallics. Yang P; Zhou E; Hou G; Zi G; Ding W; Walter MD Chemistry; 2016 Sep; 22(39):13845-13849. PubMed ID: 27535776 [TBL] [Abstract][Full Text] [Related]
8. Insertion, protonolysis and photolysis reactivity of a thorium monoalkyl amidinate complex. Settineri NS; Arnold J Chem Sci; 2018 Mar; 9(10):2831-2841. PubMed ID: 29732069 [TBL] [Abstract][Full Text] [Related]
9. Systematic Investigation of the Molecular and Electronic Structure of Thorium and Uranium Phosphorus and Arsenic Complexes. Tarlton ML; Fajen OJ; Kelley SP; Kerridge A; Malcomson T; Morrison TL; Shores MP; Xhani X; Walensky JR Inorg Chem; 2021 Jul; 60(14):10614-10630. PubMed ID: 34192465 [TBL] [Abstract][Full Text] [Related]
10. Thorium- and uranium-azide reductions: a transient dithorium-nitride Du J; King DM; Chatelain L; Lu E; Tuna F; McInnes EJL; Wooles AJ; Maron L; Liddle ST Chem Sci; 2019 Apr; 10(13):3738-3745. PubMed ID: 30996964 [TBL] [Abstract][Full Text] [Related]
11. Selective recovery of uranium and thorium ions from dilute aqueous solutions by animal biopolymers. Ishikawa S; Suyama K; Arihara K; Itoh M Biol Trace Elem Res; 2002 Jun; 86(3):227-36. PubMed ID: 12019520 [TBL] [Abstract][Full Text] [Related]
12. Tetravalent Uranium and Thorium Complexes: Elucidating Disparate Reactivities of An Guo Y; Li X; Liu K; Hu K; Mei L; Chai Z; Gibson JK; Yu J; Shi W Inorg Chem; 2023 Jul; 62(27):10684-10693. PubMed ID: 37377407 [TBL] [Abstract][Full Text] [Related]
13. Bonding and Reactivity in Terminal versus Bridging Arenide Complexes of Thorium Acting as Th Hsueh FC; Rajeshkumar T; Kooij B; Scopelliti R; Severin K; Maron L; Zivkovic I; Mazzanti M Angew Chem Int Ed Engl; 2023 Feb; 62(9):e202215846. PubMed ID: 36576035 [TBL] [Abstract][Full Text] [Related]
14. Evidence for the involvement of 5f orbitals in the bonding and reactivity of organometallic actinide compounds: thorium(IV) and uranium(IV) bis(hydrazonato) complexes. Cantat T; Graves CR; Jantunen KC; Burns CJ; Scott BL; Schelter EJ; Morris DE; Hay PJ; Kiplinger JL J Am Chem Soc; 2008 Dec; 130(51):17537-51. PubMed ID: 19053455 [TBL] [Abstract][Full Text] [Related]
16. The Rise of Phosphaethynolate Chemistry in Early Transition Metals, Actinides, and Rare-Earth Complexes. Grant LN; Mindiola DJ Chemistry; 2019 Dec; 25(71):16171-16178. PubMed ID: 31332849 [TBL] [Abstract][Full Text] [Related]
17. Photolysis-driven bond activation by thorium and uranium tetraosmate polyhydride complexes. Ye CZ; Del Rosal I; Kelly SN; Brackbill IJ; Maron L; Camp C; Arnold J Chem Sci; 2024 Jun; 15(25):9784-9792. PubMed ID: 38939147 [TBL] [Abstract][Full Text] [Related]
18. Tris(phosphinoamide)-supported uranium-cobalt heterobimetallic complexes featuring Co → U dative interactions. Napoline JW; Kraft SJ; Matson EM; Fanwick PE; Bart SC; Thomas CM Inorg Chem; 2013 Oct; 52(20):12170-7. PubMed ID: 24111545 [TBL] [Abstract][Full Text] [Related]
19. Actinide-transition metal bonding in heterobimetallic uranium- and thorium-molybdenum paddlewheel complexes. Ayres AJ; Zegke M; Ostrowski JPA; Tuna F; McInnes EJL; Wooles AJ; Liddle ST Chem Commun (Camb); 2018 Nov; 54(96):13515-13518. PubMed ID: 30431026 [TBL] [Abstract][Full Text] [Related]
20. Uranium Metallocene Azides, Isocyanates, and Their Borane-Capped Lewis Adducts. Boreen MA; McCabe KN; Lohrey TD; Watt FA; Maron L; Hohloch S; Arnold J Inorg Chem; 2020 Jun; 59(12):8580-8588. PubMed ID: 32463677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]