These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30090350)

  • 1. Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 Jan; 5(1):340-353. PubMed ID: 30090350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 May; 5(3):773-787. PubMed ID: 30090388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSTR modeling for qualitative and quantitative toxicity predictions of diverse chemical pesticides in honey bee for regulatory purposes.
    Singh KP; Gupta S; Basant N; Mohan D
    Chem Res Toxicol; 2014 Sep; 27(9):1504-15. PubMed ID: 25167463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of acute toxicity of pesticides for Americamysis bahia using linear and nonlinear QSTR modelling approaches.
    Diéguez-Santana K; Nachimba-Mayanchi MM; Puris A; Gutiérrez RT; González-Díaz H
    Environ Res; 2022 Nov; 214(Pt 3):113984. PubMed ID: 35981614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes.
    Basant N; Gupta S; Singh KP
    J Chem Inf Model; 2015 Jul; 55(7):1337-48. PubMed ID: 26158470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting the acute neurotoxicity of diverse organic solvents using probabilistic neural networks based QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Neurotoxicology; 2016 Mar; 53():45-52. PubMed ID: 26721664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSTR modeling for predicting aquatic toxicity of pharmacological active compounds in multiple test species for regulatory purpose.
    Singh KP; Gupta S; Basant N
    Chemosphere; 2015 Feb; 120():680-9. PubMed ID: 25462313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR modeling for predicting reproductive toxicity of chemicals in rats for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 Jul; 5(4):1029-1038. PubMed ID: 30090410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationship predicting toxicity of pesticides towards Daphnia magna.
    Chen C; Yang B; Li M; Huang S; Huang X
    Ecotoxicology; 2024 Aug; 33(6):560-568. PubMed ID: 38592644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into pesticide toxicity against aquatic organism: QSTR models on Daphnia Magna.
    He L; Xiao K; Zhou C; Li G; Yang H; Li Z; Cheng J
    Ecotoxicol Environ Saf; 2019 May; 173():285-292. PubMed ID: 30776561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquatic toxicity prediction of diverse pesticides on two algal species using QSTR modeling approach.
    Banjare P; Singh J; Papa E; Roy PP
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10599-10612. PubMed ID: 36083366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A QSTR model for toxicity prediction of pesticides towards Daphnia magna.
    Jia Q; Wang J; Yan F; Wang Q
    Chemosphere; 2022 Mar; 291(Pt 2):132980. PubMed ID: 34813852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive classification-based QSTR models for toxicity study of diverse pesticides on multiple avian species.
    Banjare P; Singh J; Roy PP
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):17992-18003. PubMed ID: 33410022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches.
    Hossain KA; Roy K
    Ecotoxicol Environ Saf; 2018 Dec; 166():92-101. PubMed ID: 30253287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The kernel-weighted local polynomial regression (KwLPR) approach: an efficient, novel tool for development of QSAR/QSAAR toxicity extrapolation models.
    Gajewicz-Skretna A; Kar S; Piotrowska M; Leszczynski J
    J Cheminform; 2021 Feb; 13(1):9. PubMed ID: 33579384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity prediction of 1,2,4-triazoles compounds by QSTR and interspecies QSTTR models.
    Liu Z; Dang K; Gao J; Fan P; Li C; Wang H; Li H; Deng X; Gao Y; Qian A
    Ecotoxicol Environ Saf; 2022 Sep; 242():113839. PubMed ID: 35816839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides.
    Basant N; Gupta S
    Nanotoxicology; 2017 Apr; 11(3):339-350. PubMed ID: 28277981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.