These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30090388)

  • 1.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 May; 5(3):773-787. PubMed ID: 30090388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QSAR modeling for predicting reproductive toxicity of chemicals in rats for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 Jul; 5(4):1029-1038. PubMed ID: 30090410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Regul Toxicol Pharmacol; 2016 Jun; 77():282-91. PubMed ID: 27018829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 Jan; 5(1):340-353. PubMed ID: 30090350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes.
    Basant N; Gupta S; Singh KP
    J Chem Inf Model; 2015 Jul; 55(7):1337-48. PubMed ID: 26158470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kernel-weighted local polynomial regression (KwLPR) approach: an efficient, novel tool for development of QSAR/QSAAR toxicity extrapolation models.
    Gajewicz-Skretna A; Kar S; Piotrowska M; Leszczynski J
    J Cheminform; 2021 Feb; 13(1):9. PubMed ID: 33579384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating sensory irritation potency of volatile organic chemicals using QSARs based on decision tree methods for regulatory purpose.
    Gupta S; Basant N; Singh KP
    Ecotoxicology; 2015 May; 24(4):873-86. PubMed ID: 25707485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR modeling for predicting mutagenic toxicity of diverse chemicals for regulatory purposes.
    Basant N; Gupta S
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14430-14444. PubMed ID: 28435990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the hazardous dose of industrial chemicals in warm-blooded species using machine learning-based modelling approaches.
    Gupta S; Basant N; Singh KP
    SAR QSAR Environ Res; 2015 Jun; 26(6):479-98. PubMed ID: 26087353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.
    Gupta S; Basant N; Rai P; Singh KP
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17810-27. PubMed ID: 26160122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional Toxicity Value (CTV) Predictor: An
    Wignall JA; Muratov E; Sedykh A; Guyton KZ; Tropsha A; Rusyn I; Chiu WA
    Environ Health Perspect; 2018 May; 126(5):057008. PubMed ID: 29847084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.
    Gupta S; Basant N; Mohan D; Singh KP
    SAR QSAR Environ Res; 2016 Jul; 27(7):539-58. PubMed ID: 27385532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSTR modeling for predicting aquatic toxicity of pharmacological active compounds in multiple test species for regulatory purpose.
    Singh KP; Gupta S; Basant N
    Chemosphere; 2015 Feb; 120():680-9. PubMed ID: 25462313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity.
    Tong W; Xie Q; Hong H; Shi L; Fang H; Perkins R
    Environ Health Perspect; 2004 Aug; 112(12):1249-54. PubMed ID: 15345371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the acute neurotoxicity of diverse organic solvents using probabilistic neural networks based QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Neurotoxicology; 2016 Mar; 53():45-52. PubMed ID: 26721664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches.
    Basant N; Gupta S; Singh KP
    Comput Biol Chem; 2016 Apr; 61():178-96. PubMed ID: 26881740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.