BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30090546)

  • 1.
    Li F; Fan D; Wang H; Yang H; Li W; Tang Y; Liu G
    Toxicol Res (Camb); 2017 Nov; 6(6):831-842. PubMed ID: 30090546
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Fan D; Yang H; Li F; Sun L; Di P; Li W; Tang Y; Liu G
    Toxicol Res (Camb); 2018 Mar; 7(2):211-220. PubMed ID: 30090576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of chemical acute oral toxicity using multi-classification methods.
    Li X; Chen L; Cheng F; Wu Z; Bian H; Xu C; Li W; Liu G; Shen X; Tang Y
    J Chem Inf Model; 2014 Apr; 54(4):1061-9. PubMed ID: 24735213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of chemical Ames mutagenicity.
    Xu C; Cheng F; Chen L; Du Z; Li W; Liu G; Lee PW; Tang Y
    J Chem Inf Model; 2012 Nov; 52(11):2840-7. PubMed ID: 23030379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.
    Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the spatial distribution of the dengue vector
    Rahman MS; Pientong C; Zafar S; Ekalaksananan T; Paul RE; Haque U; Rocklöv J; Overgaard HJ
    One Health; 2021 Dec; 13():100358. PubMed ID: 34934797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random forest algorithm-based classification model of pesticide aquatic toxicity to fishes.
    Yu X; Zeng Q
    Aquat Toxicol; 2022 Oct; 251():106265. PubMed ID: 36030712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years.
    Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH
    Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448
    [No Abstract]   [Full Text] [Related]  

  • 9. In Silico Estimation of Chemical Carcinogenicity with Binary and Ternary Classification Methods.
    Li X; Du Z; Wang J; Wu Z; Li W; Liu G; Shen X; Tang Y
    Mol Inform; 2015 Apr; 34(4):228-35. PubMed ID: 27490168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on Rapid Detection of Pesticide Residues in Shanghaiqing Based on Analyzing Near-Infrared Microscopic Images.
    Sun H; Zhang L; Ni L; Zhu Z; Luan S; Hu P
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets.
    Wu Z; Zhu M; Kang Y; Leung EL; Lei T; Shen C; Jiang D; Wang Z; Cao D; Hou T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Construction of a predictive model for in-hospital mortality of sepsis patients in intensive care unit based on machine learning].
    Zhu M; Hu C; He Y; Qian Y; Tang S; Hu Q; Hao C
    Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Jul; 35(7):696-701. PubMed ID: 37545445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches.
    Xu M; Yang H; Liu G; Tang Y; Li W
    J Appl Toxicol; 2022 Nov; 42(11):1766-1776. PubMed ID: 35653511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classifying the toxicity of pesticides to honey bees via support vector machines with random walk graph kernels.
    Yang P; Henle EA; Fern XZ; Simon CM
    J Chem Phys; 2022 Jul; 157(3):034102. PubMed ID: 35868929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women.
    Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH
    Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of Machine Learning Models for Prediction of Smoking Cessation Outcome.
    Lai CC; Huang WH; Chang BC; Hwang LC
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33807561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Study of Applications of Machine Learning Based Classification Methods for Virtual Screening of Lead Molecules.
    Vyas R; Bapat S; Jain E; Tambe SS; Karthikeyan M; Kulkarni BD
    Comb Chem High Throughput Screen; 2015; 18(7):658-72. PubMed ID: 26138573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of models for predicting the changes in phytoplankton community composition in the receiving water system of an inter-basin water transfer project.
    Zeng Q; Liu Y; Zhao H; Sun M; Li X
    Environ Pollut; 2017 Apr; 223():676-684. PubMed ID: 28196722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of human breast and colon cancers from imbalanced data using nearest neighbor and support vector machines.
    Majid A; Ali S; Iqbal M; Kausar N
    Comput Methods Programs Biomed; 2014 Mar; 113(3):792-808. PubMed ID: 24472367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.