These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30090572)

  • 1. Changes in silica nanoparticles upon internalisation by cells: size, aggregation/agglomeration state, mass- and number-based concentrations.
    Bartczak D; Davies J; Gollwitzer C; Krumrey M; Goenaga-Infante H
    Toxicol Res (Camb); 2018 Mar; 7(2):172-181. PubMed ID: 30090572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation.
    Halamoda-Kenzaoui B; Ceridono M; Urbán P; Bogni A; Ponti J; Gioria S; Kinsner-Ovaskainen A
    J Nanobiotechnology; 2017 Jun; 15(1):48. PubMed ID: 28651541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular adsorption at particle surfaces: a PM toxicity mediation mechanism.
    Kendall M; Brown L; Trought K
    Inhal Toxicol; 2004; 16 Suppl 1():99-105. PubMed ID: 15204798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution.
    Kelesidis GA; Furrer FM; Wegner K; Pratsinis SE
    Langmuir; 2018 Jul; 34(29):8532-8541. PubMed ID: 29940739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects.
    Drescher D; Orts-Gil G; Laube G; Natte K; Veh RW; Österle W; Kneipp J
    Anal Bioanal Chem; 2011 May; 400(5):1367-73. PubMed ID: 21479547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques.
    Bartczak D; Vincent P; Goenaga-Infante H
    Anal Chem; 2015 Jun; 87(11):5482-5. PubMed ID: 25970520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sonochemical coating of magnetite nanoparticles with silica.
    Dang F; Enomoto N; Hojo J; Enpuku K
    Ultrason Sonochem; 2010 Jan; 17(1):193-9. PubMed ID: 19502093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft- and hard-agglomerate aerosols made at high temperatures.
    Tsantilis S; Pratsinis SE
    Langmuir; 2004 Jul; 20(14):5933-9. PubMed ID: 16459612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.
    Liu HH; Surawanvijit S; Rallo R; Orkoulas G; Cohen Y
    Environ Sci Technol; 2011 Nov; 45(21):9284-92. PubMed ID: 21916459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Lifetime of Single-Nanoparticle Electrochemical Collision for In Situ Monitoring Nanoparticles Agglomeration and Aggregation.
    Bai YY; Yang YJ; Xu Y; Yang XY; Zhang ZL
    Anal Chem; 2023 Mar; 95(9):4429-4434. PubMed ID: 36812093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.
    Scheckman JH; McMurry PH; Pratsinis SE
    Langmuir; 2009 Jul; 25(14):8248-54. PubMed ID: 19594189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and study of properties of dental resin composites with different nanosilica particles size.
    Karabela MM; Sideridou ID
    Dent Mater; 2011 Aug; 27(8):825-35. PubMed ID: 21592549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of in vitro genotoxic, cytotoxic and transcriptomic responses following exposures to amorphous silica of different sizes.
    Decan N; Wu D; Williams A; Bernatchez S; Johnston M; Hill M; Halappanavar S
    Mutat Res Genet Toxicol Environ Mutagen; 2016 Jan; 796():8-22. PubMed ID: 26778505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe(0) nanoparticles in sand columns.
    Phenrat T; Kim HJ; Fagerlund F; Illangasekare T; Tilton RD; Lowry GV
    Environ Sci Technol; 2009 Jul; 43(13):5079-85. PubMed ID: 19673310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique.
    Murdock RC; Braydich-Stolle L; Schrand AM; Schlager JJ; Hussain SM
    Toxicol Sci; 2008 Feb; 101(2):239-53. PubMed ID: 17872897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microarray-assisted size-effect study of amorphous silica nanoparticles on human bronchial epithelial cells.
    Li Y; Duan J; Chai X; Yang M; Wang J; Chen R; Sun Z
    Nanoscale; 2019 Dec; 11(47):22907-22923. PubMed ID: 31763651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Flexible Platform for Tuning Surface Properties of Silica Nanoparticles and Monitoring Their Biological Interaction.
    Ojea-Jiménez I; Urbán P; Barahona F; Pedroni M; Capomaccio R; Ceccone G; Kinsner-Ovaskainen A; Rossi F; Gilliland D
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4838-50. PubMed ID: 26779668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary Particle Formation during the Nonaqueous Synthesis of Metal Oxide Nanocrystals.
    Stolzenburg P; Hämisch B; Richter S; Huber K; Garnweitner G
    Langmuir; 2018 Oct; 34(43):12834-12844. PubMed ID: 30272453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.