These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 30091152)

  • 1. Growth-defense trade-off regulated by hormones in grass plants growing under different grazing intensities.
    Liu M; Gong J; Li Y; Li X; Yang B; Zhang Z; Yang L; Hou X
    Physiol Plant; 2019 Jun; 166(2):553-569. PubMed ID: 30091152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regrowth strategies of Leymus chinensis in response to different grazing intensities.
    Zhang Z; Gong J; Wang B; Li X; Ding Y; Yang B; Zhu C; Liu M; Zhang W
    Ecol Appl; 2020 Jul; 30(5):e02113. PubMed ID: 32112460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in the photosynthetic and physiological responses of Leymus chinensis to different levels of grazing intensity.
    Liu M; Gong J; Yang B; Ding Y; Zhang Z; Wang B; Zhu C; Hou X
    BMC Plant Biol; 2019 Dec; 19(1):558. PubMed ID: 31842774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude.
    Li S; Yang Y; Zhang Q; Liu N; Xu Q; Hu L
    PLoS One; 2018; 13(6):e0198885. PubMed ID: 29889884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of red and blue spectrum on photosynthesis physiological characteristics of two ecotypes of Leymus chinensis].
    Zhou C; Yang YF; Wang K
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1441-4. PubMed ID: 18844135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology of Leymus chinensis under seasonal grazing: Implications for the development of sustainable grazing in a temperate grassland of Inner Mongolia.
    Song L; Pan Y; Gong J; Li X; Liu M; Yang B; Zhang Z; Baoyin T
    J Environ Manage; 2020 Oct; 271():110984. PubMed ID: 32579531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organ-specific regulation of growth-defense tradeoffs by plants.
    Smakowska E; Kong J; Busch W; Belkhadir Y
    Curr Opin Plant Biol; 2016 Feb; 29():129-37. PubMed ID: 26802804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jasmonate signaling and manipulation by pathogens and insects.
    Zhang L; Zhang F; Melotto M; Yao J; He SY
    J Exp Bot; 2017 Mar; 68(6):1371-1385. PubMed ID: 28069779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drought stress affects plant metabolites and herbivore preference but not host location by its parasitoids.
    Weldegergis BT; Zhu F; Poelman EH; Dicke M
    Oecologia; 2015 Mar; 177(3):701-713. PubMed ID: 25370387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatiles as inducers and suppressors of plant defense and immunity-origins, specificity, perception and signaling.
    Erb M
    Curr Opin Plant Biol; 2018 Aug; 44():117-121. PubMed ID: 29674130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mediation of Impacts of Elevated CO
    Gog L; Berenbaum MR; DeLucia EH
    J Chem Ecol; 2019 Jan; 45(1):61-73. PubMed ID: 30465148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological response to drought in radiata pine: phytohormone implication at leaf level.
    De Diego N; Pérez-Alfocea F; Cantero E; Lacuesta M; Moncaleán P
    Tree Physiol; 2012 Apr; 32(4):435-49. PubMed ID: 22499594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hormone Profiling in Plant Tissues.
    Müller M; Munné-Bosch S
    Methods Mol Biol; 2017; 1497():249-258. PubMed ID: 27864771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grazing effects on the nutritive value of dominant species in steppe grasslands of northern China.
    Zhai X; Zhang Y; Wang K; Chen Q; Li S; Huang D
    BMC Ecol; 2018 Sep; 18(1):30. PubMed ID: 30176859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Intensity of Simulated Grazing Modifies Costs and Benefits of Physiological Integration in a Rhizomatous Clonal Plant.
    Liu J; Chen C; Pan Y; Zhang Y; Gao Y
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome profiling reveals differential gene expression of detoxification enzymes in a hemimetabolous tobacco pest after feeding on jasmonate-silenced Nicotiana attenuata plants.
    Crava CM; Brütting C; Baldwin IT
    BMC Genomics; 2016 Dec; 17(1):1005. PubMed ID: 27931186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting Effects of Long-Term Grazing and Clipping on Plant Morphological Plasticity: Evidence from a Rhizomatous Grass.
    Li X; Wu Z; Liu Z; Hou X; Badgery W; Guo H; Zhao Q; Hu N; Duan J; Ren W
    PLoS One; 2015; 10(10):e0141055. PubMed ID: 26506228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overgrazing-induced legacy effects may permit
    Guo F; Li X; Jimoh SO; Ding Y; Zhang Y; Shi S; Hou X
    PeerJ; 2020; 8():e10116. PubMed ID: 33083144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aboveground herbivory induced jasmonates disproportionately reduce plant reproductive potential by facilitating root nematode infestation.
    Machado RAR; Arce CCM; McClure MA; Baldwin IT; Erb M
    Plant Cell Environ; 2018 Apr; 41(4):797-808. PubMed ID: 29327360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth-Defense Trade-Offs Induced by Long-term Overgrazing Could Act as a Stress Memory.
    Qu K; Cheng Y; Gao K; Ren W; Fry EL; Yin J; Liu Y
    Front Plant Sci; 2022; 13():917354. PubMed ID: 35720531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.