BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 30091299)

  • 1. Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions.
    Wang D; Azofra LM; Harb M; Cavallo L; Zhang X; Suryanto BHR; MacFarlane DR
    ChemSusChem; 2018 Oct; 11(19):3416-3422. PubMed ID: 30091299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial N
    Zhao L; Zhao J; Zhao J; Zhang L; Wu D; Wang H; Li J; Ren X; Wei Q
    Nanotechnology; 2020 May; 31(29):29LT01. PubMed ID: 32191924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Selective Electrochemical Reduction of Dinitrogen to Ammonia at Ambient Temperature and Pressure over Iron Oxide Catalysts.
    Cui X; Tang C; Liu XM; Wang C; Ma W; Zhang Q
    Chemistry; 2018 Dec; 24(69):18494-18501. PubMed ID: 29907981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-dimensional Ru@MXene catalyst for highly selective ambient electrocatalytic nitrogen reduction.
    Liu A; Gao M; Ren X; Meng F; Yang Y; Yang Q; Guan W; Gao L; Liang X; Ma T
    Nanoscale; 2020 May; 12(20):10933-10938. PubMed ID: 32195521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambient NH
    Zhang L; Ren X; Luo Y; Shi X; Asiri AM; Li T; Sun X
    Chem Commun (Camb); 2018 Nov; 54(92):12966-12969. PubMed ID: 30382249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ag nanosheets for efficient electrocatalytic N
    Huang H; Xia L; Shi X; Asiri AM; Sun X
    Chem Commun (Camb); 2018 Oct; 54(81):11427-11430. PubMed ID: 30246829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature.
    Ghorai UK; Paul S; Ghorai B; Adalder A; Kapse S; Thapa R; Nagendra A; Gain A
    ACS Nano; 2021 Mar; 15(3):5230-5239. PubMed ID: 33646739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic Molybdenum for Synthesis of Ammonia with 50% Faradic Efficiency.
    Zhang C; Wang Z; Lei J; Ma L; Yakobson BI; Tour JM
    Small; 2022 Apr; 18(15):e2106327. PubMed ID: 35278039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BN Pairs Enriched Defective Carbon Nanosheets for Ammonia Synthesis with High Efficiency.
    Chen C; Yan D; Wang Y; Zhou Y; Zou Y; Li Y; Wang S
    Small; 2019 Feb; 15(7):e1805029. PubMed ID: 30650246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient and durable N
    Zhu X; Liu Z; Liu Q; Luo Y; Shi X; Asiri AM; Wu Y; Sun X
    Chem Commun (Camb); 2018 Oct; 54(80):11332-11335. PubMed ID: 30239537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient metal-free borocarbonitride catalysts for electrochemical reduction of N
    Shi L; Bi S; Qi Y; Ning G; Ye J
    J Colloid Interface Sci; 2023 Jul; 641():577-584. PubMed ID: 36963251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur-doped graphene for efficient electrocatalytic N
    Xia L; Yang J; Wang H; Zhao R; Chen H; Fang W; Asiri AM; Xie F; Cui G; Sun X
    Chem Commun (Camb); 2019 Mar; 55(23):3371-3374. PubMed ID: 30816888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimony-Based Composites Loaded on Phosphorus-Doped Carbon for Boosting Faradaic Efficiency of the Electrochemical Nitrogen Reduction Reaction.
    Liu X; Jang H; Li P; Wang J; Qin Q; Kim MG; Li G; Cho J
    Angew Chem Int Ed Engl; 2019 Sep; 58(38):13329-13334. PubMed ID: 31338913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis.
    Chen P; Zhang N; Wang S; Zhou T; Tong Y; Ao C; Yan W; Zhang L; Chu W; Wu C; Xie Y
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6635-6640. PubMed ID: 30872473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambient Electrosynthesis of Ammonia on a Core-Shell-Structured Au@CeO
    Liu G; Cui Z; Han M; Zhang S; Zhao C; Chen C; Wang G; Zhang H
    Chemistry; 2019 Apr; 25(23):5904-5911. PubMed ID: 30767346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass-derived oxygen-doped hollow carbon microtubes for electrocatalytic N
    Wu T; Li P; Wang H; Zhao R; Zhou Q; Kong W; Liu M; Zhang Y; Sun X; Gong FF
    Chem Commun (Camb); 2019 Feb; 55(18):2684-2687. PubMed ID: 30747174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical N
    Ren X; Cui G; Chen L; Xie F; Wei Q; Tian Z; Sun X
    Chem Commun (Camb); 2018 Jul; 54(61):8474-8477. PubMed ID: 30003198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ambient Electrochemical Synthesis of Ammonia from Nitrogen and Water Catalyzed by Flower-Like Gold Microstructures.
    Wang Z; Li Y; Yu H; Xu Y; Xue H; Li X; Wang H; Wang L
    ChemSusChem; 2018 Oct; 11(19):3480-3485. PubMed ID: 30109915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions.
    Zhang X; Kong RM; Du H; Xia L; Qu F
    Chem Commun (Camb); 2018 May; 54(42):5323-5325. PubMed ID: 29736524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A perovskite La
    Yu J; Li C; Li B; Zhu X; Zhang R; Ji L; Tang D; Asiri AM; Sun X; Li Q; Liu S; Luo Y
    Chem Commun (Camb); 2019 May; 55(45):6401-6404. PubMed ID: 31094366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.