These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 30091362)
21. Adjusting the chemical and physical properties of hydrogels leads to improved stem cell survival and tissue ingrowth in spinal cord injury reconstruction: a comparative study of four methacrylate hydrogels. Hejčl A; Růžička J; Kapcalová M; Turnovcová K; Krumbholcová E; Přádný M; Michálek J; Cihlář J; Jendelová P; Syková E Stem Cells Dev; 2013 Oct; 22(20):2794-805. PubMed ID: 23750454 [TBL] [Abstract][Full Text] [Related]
22. An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury. Liu T; Zhang Q; Li H; Cui X; Qi Z; Yang X J Biol Eng; 2023 Jul; 17(1):48. PubMed ID: 37488558 [TBL] [Abstract][Full Text] [Related]
23. Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. Tonda-Turo C; Gnavi S; Ruini F; Gambarotta G; Gioffredi E; Chiono V; Perroteau I; Ciardelli G J Tissue Eng Regen Med; 2017 Jan; 11(1):197-208. PubMed ID: 24737714 [TBL] [Abstract][Full Text] [Related]
24. Association between neural stem/progenitor cells and biomaterials in spinal cord injury therapies: A systematic review and network meta-analysis. Jeon J; Park SH; Choi J; Han SM; Kim HW; Shim SR; Hyun JK Acta Biomater; 2024 Jul; 183():50-60. PubMed ID: 38871200 [TBL] [Abstract][Full Text] [Related]
25. Implantation of a functional TEMPO-hydrogel induces recovery from rat spinal cord transection through promoting nerve regeneration and protecting bladder tissue. Zhang Y; Li L; Mu J; Chen J; Feng S; Gao J Biomater Sci; 2020 Mar; 8(6):1695-1701. PubMed ID: 31989134 [TBL] [Abstract][Full Text] [Related]
26. Directing Induced Pluripotent Stem Cell Derived Neural Stem Cell Fate with a Three-Dimensional Biomimetic Hydrogel for Spinal Cord Injury Repair. Fan L; Liu C; Chen X; Zou Y; Zhou Z; Lin C; Tan G; Zhou L; Ning C; Wang Q ACS Appl Mater Interfaces; 2018 May; 10(21):17742-17755. PubMed ID: 29733569 [TBL] [Abstract][Full Text] [Related]
27. Decellularized porcine peripheral nerve based injectable hydrogels as a Schwann cell carrier for injured spinal cord regeneration. Agarwal G; Shumard S; McCrary MW; Osborne O; Santiago JM; Ausec B; Schmidt CE J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38885674 [No Abstract] [Full Text] [Related]
28. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Shi W; Huang CJ; Xu XD; Jin GH; Huang RQ; Huang JF; Chen YN; Ju SQ; Wang Y; Shi YW; Qin JB; Zhang YQ; Liu QQ; Wang XB; Zhang XH; Chen J Acta Biomater; 2016 Nov; 45():247-261. PubMed ID: 27592818 [TBL] [Abstract][Full Text] [Related]
29. The Porous SilMA Hydrogel Scaffolds Carrying Dual-Sensitive Paclitaxel Nanoparticles Promote Neuronal Differentiation for Spinal Cord Injury Repair. Li Z; Zhou T; Bao Z; Wu M; Mao Y Tissue Eng Regen Med; 2024 Aug; 21(6):809-827. PubMed ID: 39004636 [TBL] [Abstract][Full Text] [Related]
30. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497 [TBL] [Abstract][Full Text] [Related]
31. Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury. Song S; Zhou J; Wan J; Zhao X; Li K; Yang C; Zheng C; Wang L; Tang Y; Wang C; Liu J Int J Bioprint; 2023; 9(3):692. PubMed ID: 37273987 [TBL] [Abstract][Full Text] [Related]
32. Bone mesenchymal stem cell-derived exosome-loaded injectable hydrogel for minimally invasive treatment of spinal cord injury. Cheng J; Chen Z; Liu C; Zhong M; Wang S; Sun Y; Wen H; Shu T Nanomedicine (Lond); 2021 Aug; 16(18):1567-1579. PubMed ID: 34189939 [No Abstract] [Full Text] [Related]
33. Injectable Scaffold-Systems for the Regeneration of Spinal Cord: Advances of the Past Decade. Santi S; Corridori I; Pugno NM; Motta A; Migliaresi C ACS Biomater Sci Eng; 2021 Mar; 7(3):983-999. PubMed ID: 33523634 [TBL] [Abstract][Full Text] [Related]
34. Strategies for endogenous spinal cord repair: HPMA hydrogel to recruit migrating endogenous stem cells. Espinosa-Jeffrey A; Oregel K; Wiggins L; Valera R; Bosnoyan K; Agbo C; Awosika O; Zhao PM; de Vellis J; Woerly S Adv Exp Med Biol; 2012; 760():25-52. PubMed ID: 23281512 [TBL] [Abstract][Full Text] [Related]
35. Thermo-sensitive hydrogels combined with decellularised matrix deliver bFGF for the functional recovery of rats after a spinal cord injury. Xu HL; Tian FR; Lu CT; Xu J; Fan ZL; Yang JJ; Chen PP; Huang YD; Xiao J; Zhao YZ Sci Rep; 2016 Dec; 6():38332. PubMed ID: 27922061 [TBL] [Abstract][Full Text] [Related]
36. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Kaneko A; Matsushita A; Sankai Y Biomed Mater; 2015 Jan; 10(1):015008. PubMed ID: 25585935 [TBL] [Abstract][Full Text] [Related]
37. BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration. Moradi F; Bahktiari M; Joghataei MT; Nobakht M; Soleimani M; Hasanzadeh G; Fallah A; Zarbakhsh S; Hejazian LB; Shirmohammadi M; Maleki F J Neurosci Res; 2012 Dec; 90(12):2335-48. PubMed ID: 22996688 [TBL] [Abstract][Full Text] [Related]
38. A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Shen H; Xu B; Yang C; Xue W; You Z; Wu X; Ma D; Shao D; Leong K; Dai J Biomaterials; 2022 Jan; 280():121279. PubMed ID: 34847433 [TBL] [Abstract][Full Text] [Related]
39. Hydrogel fibers encapsulating human stem cells in an injectable calcium phosphate scaffold for bone tissue engineering. Wang L; Wang P; Weir MD; Reynolds MA; Zhao L; Xu HH Biomed Mater; 2016 Nov; 11(6):065008. PubMed ID: 27811389 [TBL] [Abstract][Full Text] [Related]
40. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. Li G; Che MT; Zeng X; Qiu XC; Feng B; Lai BQ; Shen HY; Ling EA; Zeng YS J Biomed Mater Res A; 2018 Aug; 106(8):2158-2170. PubMed ID: 29577604 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]