These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30091460)

  • 61. Heme-nitrosyls: electronic structure implications for function in biology.
    Hunt AP; Lehnert N
    Acc Chem Res; 2015 Jul; 48(7):2117-25. PubMed ID: 26114618
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel mechanism of heme degradation to biliverdin studied by QM/MM and QM calculations.
    Alavi FS; Gheidi M; Zahedi M; Safari N; Ryde U
    Dalton Trans; 2018 Jun; 47(25):8283-8291. PubMed ID: 29892759
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Quantum mechanical/molecular mechanical study of mechanisms of heme degradation by the enzyme heme oxygenase: the strategic function of the water cluster.
    Chen H; Moreau Y; Derat E; Shaik S
    J Am Chem Soc; 2008 Feb; 130(6):1953-65. PubMed ID: 18201087
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Anharmonic Vibrational Analysis of Biomolecules and Solvated Molecules Using Hybrid QM/MM Computations.
    Yagi K; Yamada K; Kobayashi C; Sugita Y
    J Chem Theory Comput; 2019 Mar; 15(3):1924-1938. PubMed ID: 30730746
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structures of cyanide, nitric oxide and hydroxylamine complexes of Arthromyces ramosusperoxidase at 100 K refined to 1.3 A resolution: coordination geometries of the ligands to the haem iron.
    Fukuyama K; Okada T
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):472-7. PubMed ID: 17372351
    [TBL] [Abstract][Full Text] [Related]  

  • 66. DFT calculations suggest a new type of self-protection and self-inhibition mechanism in the mammalian heme enzyme myeloperoxidase: nucleophilic addition of a functional water rather than one-electron reduction.
    Sicking W; Somnitz H; Schmuck C
    Chemistry; 2012 Aug; 18(35):10937-48. PubMed ID: 22829409
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Homology modeling of a heme protein, lignin peroxidase, from the crystal structure of cytochrome c peroxidase.
    Du P; Collins JR; Loew GH
    Protein Eng; 1992 Oct; 5(7):679-91. PubMed ID: 1336201
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Protonation of the proximal histidine ligand in heme peroxidases.
    Heimdal J; Rydberg P; Ryde U
    J Phys Chem B; 2008 Feb; 112(8):2501-10. PubMed ID: 18251539
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Resonance Raman spectroscopy study of change of iron spin state in horseradish peroxidase C induced by removal of calcium.
    Huang Q; Laberge M; Szigeti K; Fidy J; Schweitzer-Stenner R
    Biopolymers; 2003; 72(4):241-8. PubMed ID: 12833478
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Protonated heme.
    Chiavarino B; Crestoni ME; Fornarini S; Rovira C
    Chemistry; 2007; 13(3):776-85. PubMed ID: 17042044
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.
    Surawatanawong P; Tye JW; Hall MB
    Inorg Chem; 2010 Jan; 49(1):188-98. PubMed ID: 19968237
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structures and Catalytic Activities of Complexes between Heme and All Parallel-Stranded Monomeric G-Quadruplex DNAs.
    Yamamoto Y; Araki H; Shinomiya R; Hayasaka K; Nakayama Y; Ochi K; Shibata T; Momotake A; Ohyama T; Hagihara M; Hemmi H
    Biochemistry; 2018 Oct; 57(41):5938-5948. PubMed ID: 30234971
    [TBL] [Abstract][Full Text] [Related]  

  • 73. QM/MM Study of the Conversion of Oxophlorin into Verdoheme by Heme Oxygenase.
    Alavi FS; Zahedi M; Safari N; Ryde U
    J Phys Chem B; 2017 Dec; 121(51):11427-11436. PubMed ID: 29090581
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Crystal structure of the pristine peroxidase ferryl center and its relevance to proton-coupled electron transfer.
    Chreifi G; Baxter EL; Doukov T; Cohen AE; McPhillips SE; Song J; Meharenna YT; Soltis SM; Poulos TL
    Proc Natl Acad Sci U S A; 2016 Feb; 113(5):1226-31. PubMed ID: 26787871
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Naked five-coordinate Fe(III)(NO) porphyrin complexes: vibrational and reactivity features.
    Lanucara F; Chiavarino B; Crestoni ME; Scuderi D; Sinha RK; Maître P; Fornarini S
    Inorg Chem; 2011 May; 50(10):4445-52. PubMed ID: 21476565
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Application of Badger's rule to heme and non-heme iron-oxygen bonds: an examination of ferryl protonation states.
    Green MT
    J Am Chem Soc; 2006 Feb; 128(6):1902-6. PubMed ID: 16464091
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The role of the distal histidine in H2O2 activation and heme protection in both peroxidase and globin functions.
    Zhao J; de Serrano V; Dumarieh R; Thompson M; Ghiladi RA; Franzen S
    J Phys Chem B; 2012 Oct; 116(40):12065-77. PubMed ID: 22928870
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Unravelling the intrinsic features of NO binding to iron(II)- and iron(III)-hemes.
    Chiavarino B; Crestoni ME; Fornarini S; Rovira C
    Inorg Chem; 2008 Sep; 47(17):7792-801. PubMed ID: 18681420
    [TBL] [Abstract][Full Text] [Related]  

  • 79. On the Catalytic Activity of the Engineered Coiled-Coil Heptamer Mimicking the Hydrolase Enzymes: Insights from a Computational Study.
    Prejanò M; Romeo I; Russo N; Marino T
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604744
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ligand accessibility to heme cytochrome b
    Samhan-Arias AK; Cordas CM; Carepo MS; Maia LB; Gutierrez-Merino C; Moura I; Moura JJG
    J Biol Inorg Chem; 2019 May; 24(3):317-330. PubMed ID: 30838452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.