BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 30091470)

  • 1. Cascaded systems analysis of shift-variant image quality in slit-scanning breast tomosynthesis.
    Berggren K; Cederström B; Lundqvist M; Fredenberg E
    Med Phys; 2018 Oct; 45(10):4392-4401. PubMed ID: 30091470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of photon-counting multislit breast tomosynthesis.
    Berggren K; Cederström B; Lundqvist M; Fredenberg E
    Med Phys; 2018 Feb; 45(2):549-560. PubMed ID: 29159881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical Note: Comparison of first- and second-generation photon-counting slit-scanning tomosynthesis systems.
    Berggren K; Cederström B; Lundqvist M; Fredenberg E
    Med Phys; 2018 Feb; 45(2):635-638. PubMed ID: 29265414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional linear system analysis for breast tomosynthesis.
    Zhao B; Zhao W
    Med Phys; 2008 Dec; 35(12):5219-32. PubMed ID: 19175081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.
    Hu YH; Zhao W
    Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.
    Zhao C; Vassiljev N; Konstantinidis AC; Speller RD; Kanicki J
    Phys Med Biol; 2017 Mar; 62(5):1994-2017. PubMed ID: 28072394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonstationary model of oblique x-ray incidence in amorphous selenium detectors: II. Transfer functions.
    Acciavatti RJ; Maidment ADA
    Med Phys; 2019 Feb; 46(2):505-516. PubMed ID: 30488455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte-Carlo simulation of a slot-scanning digital mammography system for tomosynthesis.
    Kulkarni M; Dendere R; Nicolls F; Douglas TS
    J Xray Sci Technol; 2016; 24(2):191-206. PubMed ID: 27002901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative image quality measurements of a digital breast tomosynthesis system.
    Olgar T; Kahn T; Gosch D
    Rofo; 2013 Dec; 185(12):1188-94. PubMed ID: 23888475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of contrast-enhanced breast imaging: Analysis using a cascaded linear system model.
    Hu YH; Scaduto DA; Zhao W
    Med Phys; 2017 Jan; 44(1):43-56. PubMed ID: 28044312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of phosphor-based detector design for oblique x-ray incidence in digital breast tomosynthesis.
    Acciavatti RJ; Maidment AD
    Med Phys; 2011 Nov; 38(11):6188. PubMed ID: 22047384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrospective analysis of a detector fault for a full field digital mammography system.
    Marshall NW
    Phys Med Biol; 2006 Nov; 51(21):5655-73. PubMed ID: 17047276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oblique reconstructions in tomosynthesis. I. Linear systems theory.
    Acciavatti RJ; Maidment AD
    Med Phys; 2013 Nov; 40(11):111911. PubMed ID: 24320444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental validation of a three-dimensional linear system model for breast tomosynthesis.
    Zhao B; Zhou J; Hu YH; Mertelmeier T; Ludwig J; Zhao W
    Med Phys; 2009 Jan; 36(1):240-51. PubMed ID: 19235392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems.
    Marshall NW
    Phys Med Biol; 2007 Sep; 52(18):5545-68. PubMed ID: 17804881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmented separable footprint projector for digital breast tomosynthesis and its application for subpixel reconstruction.
    Zheng J; Fessler JA; Chan HP
    Med Phys; 2017 Mar; 44(3):986-1001. PubMed ID: 28058719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-plane image quality and NPWE detectability index in digital breast tomosynthesis.
    Monnin P; Verdun FR; Bosmans H; Marshall NW
    Phys Med Biol; 2020 May; 65(9):095013. PubMed ID: 32191923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of system sharpness for two digital breast tomosynthesis systems.
    Marshall NW; Bosmans H
    Phys Med Biol; 2012 Nov; 57(22):7629-50. PubMed ID: 23123601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computer simulation platform for the optimization of a breast tomosynthesis system.
    Zhou J; Zhao B; Zhao W
    Med Phys; 2007 Mar; 34(3):1098-109. PubMed ID: 17441255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis.
    Zhao C; Kanicki J
    Med Phys; 2014 Sep; 41(9):091902. PubMed ID: 25186389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.