These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30091484)

  • 21. Heat-Excitation-Based Triboelectric Charge Promotion Strategy.
    Xia X; Zi Y
    Adv Sci (Weinh); 2024 Nov; 11(41):e2404489. PubMed ID: 39277777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape-Adaptive, Self-Healable Triboelectric Nanogenerator with Enhanced Performances by Soft Solid-Solid Contact Electrification.
    Chen Y; Pu X; Liu M; Kuang S; Zhang P; Hua Q; Cong Z; Guo W; Hu W; Wang ZL
    ACS Nano; 2019 Aug; 13(8):8936-8945. PubMed ID: 31260619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An Ultra-Low-Friction Triboelectric-Electromagnetic Hybrid Nanogenerator for Rotation Energy Harvesting and Self-Powered Wind Speed Sensor.
    Wang P; Pan L; Wang J; Xu M; Dai G; Zou H; Dong K; Wang ZL
    ACS Nano; 2018 Sep; 12(9):9433-9440. PubMed ID: 30205007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of the Triboelectric Nanogenerator Using a Metal-to-Metal Imprinting Process for Improved Electrical Output.
    La M; Choi JH; Choi JY; Hwang TY; Kang J; Choi D
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wind-blown Sand Electrification Inspired Triboelectric Energy Harvesting Based on Homogeneous Inorganic Materials Contact: A Theoretical Study and Prediction.
    Hu W; Wu W; Zhou HM
    Sci Rep; 2016 Jan; 6():19912. PubMed ID: 26817411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interface inter-atomic electron-transition induced photon emission in contact-electrification.
    Li D; Xu C; Liao Y; Cai W; Zhu Y; Wang ZL
    Sci Adv; 2021 Sep; 7(39):eabj0349. PubMed ID: 34559569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and Dimension Effects on the Performance of Layered Triboelectric Nanogenerators in Contact-Separation Mode.
    Yin X; Liu D; Zhou L; Li X; Zhang C; Cheng P; Guo H; Song W; Wang J; Wang ZL
    ACS Nano; 2019 Jan; 13(1):698-705. PubMed ID: 30566320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-adaptive Bioinspired Hummingbird-wing Stimulated Triboelectric Nanogenerators.
    Ahmed A; Hassan I; Song P; Gamaleldin M; Radhi A; Panwar N; Tjin SC; Desoky AY; Sinton D; Yong KT; Zu J
    Sci Rep; 2017 Dec; 7(1):17143. PubMed ID: 29215064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor.
    Lin L; Wang S; Niu S; Liu C; Xie Y; Wang ZL
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):3031-8. PubMed ID: 24467654
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile Tailoring of Contact Layer Characteristics of the Triboelectric Nanogenerator Based on Portable Imprinting Device.
    Cho S; Jang S; La M; Yun Y; Yu T; Park SJ; Choi D
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Redox Atmosphere on Contact Electrification of Polymers.
    Sun LL; Lin SQ; Tang W; Chen X; Wang ZL
    ACS Nano; 2020 Dec; 14(12):17354-17364. PubMed ID: 33210533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cylindrical rotating triboelectric nanogenerator.
    Bai P; Zhu G; Liu Y; Chen J; Jing Q; Yang W; Ma J; Zhang G; Wang ZL
    ACS Nano; 2013 Jul; 7(7):6361-6. PubMed ID: 23799926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding Contact Electrification at Water/Polymer Interface.
    Nan Y; Shao J; Willatzen M; Wang ZL
    Research (Wash D C); 2022; 2022():9861463. PubMed ID: 35265850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials.
    Lin ZH; Xie Y; Yang Y; Wang S; Zhu G; Wang ZL
    ACS Nano; 2013 May; 7(5):4554-60. PubMed ID: 23597018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives.
    Wang ZL
    Faraday Discuss; 2014; 176():447-58. PubMed ID: 25406406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Largely Improving the Robustness and Lifetime of Triboelectric Nanogenerators through Automatic Transition between Contact and Noncontact Working States.
    Li S; Wang S; Zi Y; Wen Z; Lin L; Zhang G; Wang ZL
    ACS Nano; 2015 Jul; 9(7):7479-87. PubMed ID: 26098784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Achieving ultrahigh triboelectric charge density for efficient energy harvesting.
    Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL
    Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.
    Wang S; Mu X; Wang X; Gu AY; Wang ZL; Yang Y
    ACS Nano; 2015 Oct; 9(10):9554-63. PubMed ID: 26343789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly Durable Ti-Mesh Based Triboelectric Nanogenerator for Self-Powered Device Applications.
    Tsege EL; Shin DM; Lee S; Kim HK; Hwang YH
    J Nanosci Nanotechnol; 2016 May; 16(5):4864-9. PubMed ID: 27483836
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Triboelectric Nanogenerator as a Probe for Measuring the Charge Transfer between Liquid and Solid Surfaces.
    Zhang J; Lin S; Zheng M; Wang ZL
    ACS Nano; 2021 Sep; 15(9):14830-14837. PubMed ID: 34415141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.