These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30091587)

  • 1. Understanding the Mechanism for Capacity Decay of V
    Shi X; Du J; Jones TGJ; Wang X; Liang HP
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29667-29674. PubMed ID: 30091587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Production of V
    Liang HP; Du J; Jones TG; Lawrence NS; Meredith AW
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25674-25679. PubMed ID: 27661096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of V6O13 micro-flowers for Li-ion and Na-ion battery cathodes with good cycling performance.
    Fei H; Lin Y; Wei M
    J Colloid Interface Sci; 2014 Jul; 425():1-4. PubMed ID: 24776656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry.
    Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constructing stable V
    Cao J; Ou T; Geng S; Zhang X; Zhang D; Zhang L; Luo D; Zhang X; Qin J; Yang X
    J Colloid Interface Sci; 2024 Feb; 656():495-503. PubMed ID: 38007941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries.
    Shi JL; Zhang JN; He M; Zhang XD; Yin YX; Li H; Guo YG; Gu L; Wan LJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20138-46. PubMed ID: 27437556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cation mixing controlled by thermal treatment duration on the electrochemical stability of lithium transition-metal oxides.
    Sun G; Yin X; Yang W; Song A; Jia C; Yang W; Du Q; Ma Z; Shao G
    Phys Chem Chem Phys; 2017 Nov; 19(44):29886-29894. PubMed ID: 29086786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Metal-Organic Framework to Li
    He J; Chen Y; Lv W; Wen K; Xu C; Zhang W; Li Y; Qin W; He W
    ACS Nano; 2016 Dec; 10(12):10981-10987. PubMed ID: 28024364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zn
    Chen L; Zhang W; Zhang J; An Q
    Chem Commun (Camb); 2024 Jun; 60(46):5968-5971. PubMed ID: 38767594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding anion-redox reactions in cathode materials of lithium-ion batteries through
    Hwang YY; Han JH; Park SH; Jung JE; Lee NK; Lee YJ
    Nanotechnology; 2022 Feb; 33(18):. PubMed ID: 35042200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Conversion of Nitrogen Trifluoride as a Gas-to-Solid Cathode in Li Batteries.
    He M; Li Y; Guo R; Gallant BM
    J Phys Chem Lett; 2018 Aug; 9(16):4700-4706. PubMed ID: 30052041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Cl Doping on Electrochemical Performance in Orthosilicate (Li
    Singh S; Raj AK; Sen R; Johari P; Mitra S
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26885-26896. PubMed ID: 28721729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional V2O5 sheet network as electrode for lithium-ion batteries.
    Xu Y; Dunwell M; Fei L; Fu E; Lin Q; Patterson B; Yuan B; Deng S; Andersen P; Luo H; Zou G
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20408-13. PubMed ID: 25369296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.
    Durham JL; Poyraz AS; Takeuchi ES; Marschilok AC; Takeuchi KJ
    Acc Chem Res; 2016 Sep; 49(9):1864-72. PubMed ID: 27564839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Building an Electronic Bridge via Ag Decoration To Enhance Kinetics of Iron Fluoride Cathode in Lithium-Ion Batteries.
    Li Y; Zhou X; Bai Y; Chen G; Wang Z; Li H; Wu F; Wu C
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19852-19860. PubMed ID: 28453247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemistry of orthosilicate-based lithium battery cathodes: a perspective.
    Ferrari S; Capsoni D; Casino S; Destro M; Gerbaldi C; Bini M
    Phys Chem Chem Phys; 2014 Jun; 16(22):10353-66. PubMed ID: 24764049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries.
    Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D
    ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.
    Tian N; Gao Y; Li Y; Wang Z; Song X; Chen L
    Angew Chem Int Ed Engl; 2016 Jan; 55(2):644-8. PubMed ID: 26609636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.