BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 3009186)

  • 1. Measurements of the proton motive force generated by cytochrome c oxidase from Bacillus subtilis in proteoliposomes and membrane vesicles.
    de Vrij W; Driessen AJ; Hellingwerf KJ; Konings WN
    Eur J Biochem; 1986 Apr; 156(2):431-40. PubMed ID: 3009186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic characterization of cytochrome c oxidase from Bacillus subtilis.
    de Vrij W; Konings WN
    Eur J Biochem; 1987 Aug; 166(3):581-7. PubMed ID: 3038545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional incorporation of beef-heart cytochrome c oxidase into membranes of Streptococcus cremoris.
    Driessen AJ; de Vrij W; Konings WN
    Eur J Biochem; 1986 Feb; 154(3):617-24. PubMed ID: 3004984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of beef heart cytochrome c oxidase as a proton-motive force-generating mechanism in bacterial membrane vesicles.
    Driessen AJ; de Vrij W; Konings WN
    Proc Natl Acad Sci U S A; 1985 Nov; 82(22):7555-9. PubMed ID: 2999769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and application of a thermostable primary transport system: cytochrome-C oxidase from Bacillus stearothermophilus.
    De Vrij W; Heyne RI; Konings WN
    Eur J Biochem; 1989 Jan; 178(3):763-70. PubMed ID: 2536327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome o type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation.
    Matsushita K; Patel L; Kaback HR
    Biochemistry; 1984 Sep; 23(20):4703-14. PubMed ID: 6093862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus.
    Van Leeuwen CC; Postma E; Van den Broek PJ; Van Steveninck J
    J Biol Chem; 1991 Jul; 266(19):12146-51. PubMed ID: 1648083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes.
    Gao FH; Abee T; Konings WN
    Appl Environ Microbiol; 1991 Aug; 57(8):2164-70. PubMed ID: 1662930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and vectorial properties of proteoliposomes containing cytochrome oxidase in the submitochondrial orientation.
    Cooper CE; Nicholls P
    Biochemistry; 1990 Apr; 29(16):3865-71. PubMed ID: 2162200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of biological molecular generators of electric current. Cytochrome oxidase.
    Drachev LA; Jasaitis AA; Kaulen AD; Kondrashin AA; Chu LV; Semenov AY; Severina II; Skulachev VP
    J Biol Chem; 1976 Nov; 251(22):7072-6. PubMed ID: 186452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of energy-transducing properties of cytoplasmic membranes from mesophilic and thermophilic Bacillus species.
    De Vrij W; Bulthuis RA; Konings WN
    J Bacteriol; 1988 May; 170(5):2359-66. PubMed ID: 2834342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turnover and vectorial properties of cytochrome c oxidase in reconstituted vesicles.
    Wrigglesworth JM; Nicholls P
    Biochim Biophys Acta; 1979 Jul; 547(1):36-46. PubMed ID: 37902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of proton-motive force by an archaeal terminal quinol oxidase from Sulfolobus acidocaldarius.
    Gleissner M; Elferink MG; Driessen AJ; Konings WN; Anemüller S; Schäfer G
    Eur J Biochem; 1994 Sep; 224(3):983-90. PubMed ID: 7925423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanism of respiratory control: studies with proteoliposomes containing cytochrome oxidase and bacteriorhodopsin.
    Miki T; Orii Y; Mukohata Y
    J Biochem; 1987 Jul; 102(1):199-209. PubMed ID: 2822680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of proteoliposomal cytochrome c oxidase: the overall reaction.
    Nicholls P; Cooper CE; Wrigglesworth JM
    Biochem Cell Biol; 1990 Sep; 68(9):1128-34. PubMed ID: 2175201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanine and safranine dyes as membrane potential probes in cytochrome c oxidase reconstituted proteoliposomes.
    Singh AP; Nicholls P
    J Biochem Biophys Methods; 1985 Aug; 11(2-3):95-108. PubMed ID: 2993401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase.
    Matsushita K; Kaback HR
    Biochemistry; 1986 May; 25(9):2321-7. PubMed ID: 3013300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.