These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30091895)

  • 41. Superstretchable and Processable Silicone Elastomers by Digital Light Processing 3D Printing.
    Zhao T; Yu R; Li S; Li X; Zhang Y; Yang X; Zhao X; Wang C; Liu Z; Dou R; Huang W
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14391-14398. PubMed ID: 30912634
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Materials tactile logic via innervated soft thermochromic elastomers.
    Jin Y; Lin Y; Kiani A; Joshipura ID; Ge M; Dickey MD
    Nat Commun; 2019 Sep; 10(1):4187. PubMed ID: 31519906
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High thermal conductivity in soft elastomers with elongated liquid metal inclusions.
    Bartlett MD; Kazem N; Powell-Palm MJ; Huang X; Sun W; Malen JA; Majidi C
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2143-2148. PubMed ID: 28193902
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future.
    Tee BCK; Ouyang J
    Adv Mater; 2018 Nov; 30(47):e1802560. PubMed ID: 30101469
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Liquid metal-filled magnetorheological elastomer with positive piezoconductivity.
    Yun G; Tang SY; Sun S; Yuan D; Zhao Q; Deng L; Yan S; Du H; Dickey MD; Li W
    Nat Commun; 2019 Mar; 10(1):1300. PubMed ID: 30899009
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spirally Structured Conductive Composites for Highly Stretchable, Robust Conductors and Sensors.
    Wu X; Han Y; Zhang X; Lu C
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):23007-23016. PubMed ID: 28636322
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Silicone Rubber Based-Conductive Composites for Stretchable "All-in-One" Microsystems.
    Deng HT; Wen DL; Feng T; Wang YL; Zhang XR; Huang P; Zhang XS
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):39681-39700. PubMed ID: 36006298
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Material Gradients in Stretchable Substrates toward Integrated Electronic Functionality.
    Naserifar N; LeDuc PR; Fedder GK
    Adv Mater; 2016 May; 28(18):3584-91. PubMed ID: 26989814
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnetic elastomers for stretchable inductors.
    Lazarus N; Meyer CD; Bedair SS; Slipher GA; Kierzewski IM
    ACS Appl Mater Interfaces; 2015 May; 7(19):10080-4. PubMed ID: 25945395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Soft and Stretchable Thermoelectric Generators Enabled by Liquid Metal Elastomer Composites.
    Zadan M; Malakooti MH; Majidi C
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17921-17928. PubMed ID: 32208638
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chameleon-Inspired Mechanochromic Photonic Elastomer with Brilliant Structural Color and Stable Optical Response for Human Motion Visualization.
    Zhao Y; Zhao K; Yu Z; Ye C
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Material-Based Approaches for the Fabrication of Stretchable Electronics.
    Kim DC; Shim HJ; Lee W; Koo JH; Kim DH
    Adv Mater; 2020 Apr; 32(15):e1902743. PubMed ID: 31408223
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advances in Materials for Soft Stretchable Conductors and Their Behavior under Mechanical Deformation.
    Nguyen T; Khine M
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32610500
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics.
    Wang C; Zhang M; Xia K; Gong X; Wang H; Yin Z; Guan B; Zhang Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13331-13338. PubMed ID: 28345872
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitigating the Overheat of Stretchable Electronic Devices Via High-Enthalpy Thermal Dissipation of Hydrogel Encapsulation.
    Cao C; Ji S; Jiang Y; Su J; Xia H; Li H; Tian C; Wong YJ; Feng X; Chen X
    Adv Mater; 2024 Jun; 36(26):e2401875. PubMed ID: 38598692
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Composite Microfiber for Biodegradable Stretchable Electronics.
    Hanif A; Ghosh G; Meeseepong M; Haq Chouhdry H; Bag A; Chinnamani MV; Kumar S; Sultan MJ; Yadav A; Lee NE
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Stretchable and Sensitive Photodetectors Based on Hybrid Graphene and Graphene Quantum Dots.
    Chiang CW; Haider G; Tan WC; Liou YR; Lai YC; Ravindranath R; Chang HT; Chen YF
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):466-71. PubMed ID: 26696193
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stretchable Conductive Composites from Cu-Ag Nanowire Felt.
    Catenacci MJ; Reyes C; Cruz MA; Wiley BJ
    ACS Nano; 2018 Apr; 12(4):3689-3698. PubMed ID: 29537819
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stretchable, Transparent, and Stretch-Unresponsive Capacitive Touch Sensor Array with Selectively Patterned Silver Nanowires/Reduced Graphene Oxide Electrodes.
    Choi TY; Hwang BU; Kim BY; Trung TQ; Nam YH; Kim DN; Eom K; Lee NE
    ACS Appl Mater Interfaces; 2017 May; 9(21):18022-18030. PubMed ID: 28485567
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fractal design concepts for stretchable electronics.
    Fan JA; Yeo WH; Su Y; Hattori Y; Lee W; Jung SY; Zhang Y; Liu Z; Cheng H; Falgout L; Bajema M; Coleman T; Gregoire D; Larsen RJ; Huang Y; Rogers JA
    Nat Commun; 2014; 5():3266. PubMed ID: 24509865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.