These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 30091934)

  • 1. Efficient Propulsion and Hovering of Bubble-Driven Hollow Micromotors underneath an Air-Liquid Interface.
    Wang LL; Chen L; Zhang J; Duan JM; Wang L; Silber-Li ZH; Zheng X; Cui HH
    Langmuir; 2018 Sep; 34(35):10426-10433. PubMed ID: 30091934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.
    Li L; Wang J; Li T; Song W; Zhang G
    Soft Matter; 2014 Oct; 10(38):7511-8. PubMed ID: 25080889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO/ZnO
    Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multigear Bubble Propulsion of Transient Micromotors.
    Nourhani A; Karshalev E; Soto F; Wang J
    Research (Wash D C); 2020; 2020():7823615. PubMed ID: 32266331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Bubble Evolution in the Bubble-Propelled Janus Micromotors.
    Chen G; Wang X; Zhang B; Zhang F; Wang Z; Zhang B; Li G
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable magnesium fuel-based Janus micromotors with surfactant induced motion direction reversal.
    Zhao Z; Si T; Kozelskaya AI; Akimchenko IO; Tverdokhlebov SI; Rutkowski S; Frueh J
    Colloids Surf B Biointerfaces; 2022 Oct; 218():112780. PubMed ID: 35988310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching Propulsion Mechanisms of Tubular Catalytic Micromotors.
    Wrede P; Medina-Sánchez M; Fomin VM; Schmidt OG
    Small; 2021 Mar; 17(12):e2006449. PubMed ID: 33615690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Asymmetry and Driving Forces on the Propulsion of Bubble-Propelled Catalytic Micromotors.
    Hayakawa M; Onoe H; Nagai KH; Takinoue M
    Micromachines (Basel); 2016 Dec; 7(12):. PubMed ID: 30404402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications.
    Dutta S; Noh S; Gual RS; Chen X; Pané S; Nelson BJ; Choi H
    Nanomicro Lett; 2023 Nov; 16(1):41. PubMed ID: 38032424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Fabrication of Bubble-Propelled Micromotors for Wastewater Treatment.
    Ren M; Guo W; Guo H; Ren X
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22761-22767. PubMed ID: 31203603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-driven micromotors.
    Gao W; Pei A; Wang J
    ACS Nano; 2012 Sep; 6(9):8432-8. PubMed ID: 22891973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape-Controlled Fabrication of the Polymer-Based Micromotor Based on the Polydimethylsiloxane Template.
    Su M; Liu M; Liu L; Sun Y; Li M; Wang D; Zhang H; Dong B
    Langmuir; 2015 Nov; 31(43):11914-20. PubMed ID: 26471466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromotor Pills as a Dynamic Oral Delivery Platform.
    Karshalev E; Esteban-Fernández de Ávila B; Beltrán-Gastélum M; Angsantikul P; Tang S; Mundaca-Uribe R; Zhang F; Zhao J; Zhang L; Wang J
    ACS Nano; 2018 Aug; 12(8):8397-8405. PubMed ID: 30059616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breaking through Barriers: Ultrafast Microbullet Based on Cavitation Bubble.
    Feng Y; Jia D; Yue H; Wang J; Song W; Li L; Zhang AM; Li S; Chang X; Zhou D
    Small; 2023 May; 19(18):e2207565. PubMed ID: 36732889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driving Forces of the Bubble-Driven Tubular Micromotor Based on the Full Life-Cycle of the Bubble.
    Lin Y; Geng X; Chi Q; Wang C; Wang Z
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired zeolitic imidazolate framework (ZIF-8) magnetic micromotors for highly efficient removal of organic pollutants from water.
    Liu J; Li J; Wang G; Yang W; Yang J; Liu Y
    J Colloid Interface Sci; 2019 Nov; 555():234-244. PubMed ID: 31386992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.
    Wang H; Sofer Z; Eng AY; Pumera M
    Chemistry; 2014 Nov; 20(46):14946-50. PubMed ID: 25293511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bubble-Propelled Janus Gallium/Zinc Micromotors for the Active Treatment of Bacterial Infections.
    Lin Z; Gao C; Wang D; He Q
    Angew Chem Int Ed Engl; 2021 Apr; 60(16):8750-8754. PubMed ID: 33481280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Light-Driven TiO2-Au Janus Micromotors.
    Dong R; Zhang Q; Gao W; Pei A; Ren B
    ACS Nano; 2016 Jan; 10(1):839-44. PubMed ID: 26592971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How to Make a Fast, Efficient Bubble-Driven Micromotor: A Mechanical View.
    Liu L; Bai T; Chi Q; Wang Z; Xu S; Liu Q; Wang Q
    Micromachines (Basel); 2017 Aug; 8(9):. PubMed ID: 30400455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.