BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 30091972)

  • 1. Single-strand annealing between inverted DNA repeats: Pathway choice, participating proteins, and genome destabilizing consequences.
    Ramakrishnan S; Kockler Z; Evans R; Downing BD; Malkova A
    PLoS Genet; 2018 Aug; 14(8):e1007543. PubMed ID: 30091972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae.
    Sundararajan R; Gellon L; Zunder RM; Freudenreich CH
    Genetics; 2010 Jan; 184(1):65-77. PubMed ID: 19901069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverted DNA repeats channel repair of distant double-strand breaks into chromatid fusions and chromosomal rearrangements.
    VanHulle K; Lemoine FJ; Narayanan V; Downing B; Hull K; McCullough C; Bellinger M; Lobachev K; Petes TD; Malkova A
    Mol Cell Biol; 2007 Apr; 27(7):2601-14. PubMed ID: 17242181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions.
    Mosbach V; Viterbo D; Descorps-Declère S; Poggi L; Vaysse-Zinkhöfer W; Richard GF
    PLoS Genet; 2020 Jul; 16(7):e1008924. PubMed ID: 32673314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large inverted repeats in the vicinity of a single double-strand break strongly affect repair in yeast diploids lacking Rad51.
    Downing B; Morgan R; VanHulle K; Deem A; Malkova A
    Mutat Res; 2008 Oct; 645(1-2):9-18. PubMed ID: 18755201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosome aberrations resulting from double-strand DNA breaks at a naturally occurring yeast fragile site composed of inverted ty elements are independent of Mre11p and Sae2p.
    Casper AM; Greenwell PW; Tang W; Petes TD
    Genetics; 2009 Oct; 183(2):423-39, 1SI-26SI. PubMed ID: 19635935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different genetic requirements for repair of replication-born double-strand breaks by sister-chromatid recombination and break-induced replication.
    Cortés-Ledesma F; Tous C; Aguilera A
    Nucleic Acids Res; 2007; 35(19):6560-70. PubMed ID: 17905819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutants defective in Rad1-Rad10-Slx4 exhibit a unique pattern of viability during mating-type switching in Saccharomyces cerevisiae.
    Lyndaker AM; Goldfarb T; Alani E
    Genetics; 2008 Aug; 179(4):1807-21. PubMed ID: 18579504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rad9/53BP1 promotes DNA repair via crossover recombination by limiting the Sgs1 and Mph1 helicases.
    Ferrari M; Rawal CC; Lodovichi S; Vietri MY; Pellicioli A
    Nat Commun; 2020 Jun; 11(1):3181. PubMed ID: 32576832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends.
    Zhu Z; Chung WH; Shim EY; Lee SE; Ira G
    Cell; 2008 Sep; 134(6):981-94. PubMed ID: 18805091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair.
    Sugawara N; Ira G; Haber JE
    Mol Cell Biol; 2000 Jul; 20(14):5300-9. PubMed ID: 10866686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends.
    Clerici M; Mantiero D; Lucchini G; Longhese MP
    J Biol Chem; 2005 Nov; 280(46):38631-8. PubMed ID: 16162495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saw1 localizes to repair sites but is not required for recruitment of Rad10 to repair intermediates bearing short non-homologous 3' flaps during single-strand annealing in S. cerevisiae.
    Mardirosian M; Nalbandyan L; Miller AD; Phan C; Kelson EP; Fischhaber PL
    Mol Cell Biochem; 2016 Jan; 412(1-2):131-9. PubMed ID: 26699908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in
    Zhang WW; Matlashewski G
    mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair.
    Jain S; Sugawara N; Lydeard J; Vaze M; Tanguy Le Gac N; Haber JE
    Genes Dev; 2009 Feb; 23(3):291-303. PubMed ID: 19204116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SAW1 is required for SDSA double-strand break repair in S. cerevisiae.
    Diamante G; Phan C; Celis AS; Krueger J; Kelson EP; Fischhaber PL
    Biochem Biophys Res Commun; 2014 Mar; 445(3):602-7. PubMed ID: 24565838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of Single-Strand Annealing and its Role in Genome Maintenance.
    Bhargava R; Onyango DO; Stark JM
    Trends Genet; 2016 Sep; 32(9):566-575. PubMed ID: 27450436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks.
    Sasaki M; Kobayashi T
    Mol Cell; 2017 May; 66(4):533-545.e5. PubMed ID: 28525744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widely spaced and divergent inverted repeats become a potent source of chromosomal rearrangements in long single-stranded DNA regions.
    Ait Saada A; Guo W; Costa AB; Yang J; Wang J; Lobachev KS
    Nucleic Acids Res; 2023 May; 51(8):3722-3734. PubMed ID: 36919609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
    Lee K; Lee SE
    Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.