BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30092360)

  • 1. Molecular property diagnostic suite for diabetes mellitus (MPDS
    Gaur AS; Nagamani S; Tanneeru K; Druzhilovskiy D; Rudik A; Poroikov V; Narahari Sastry G
    J Biomed Inform; 2018 Sep; 85():114-125. PubMed ID: 30092360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular property diagnostic suite (MPDS): Development of disease-specific open source web portals for drug discovery.
    Nagamani S; Gaur AS; Tanneeru K; Muneeswaran G; Madugula SS; Consortium M; Druzhilovskiy D; Poroikov VV; Sastry GN
    SAR QSAR Environ Res; 2017 Nov; 28(11):913-926. PubMed ID: 29206500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modern computational intelligence based drug repurposing for diabetes epidemic.
    Mohanty S; Rashid MHA; Mohanty C; Swayamsiddha S
    Diabetes Metab Syndr; 2021; 15(4):102180. PubMed ID: 34186343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Property Diagnostic Suite Compound Library (MPDS-CL): a structure-based classification of the chemical space.
    John L; Nagamani S; Mahanta HJ; Vaikundamani S; Kumar N; Kumar A; Jamir E; Priyadarsinee L; Sastry GN
    Mol Divers; 2023 Oct; ():. PubMed ID: 37902900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Galaxy for open-source computational drug discovery solutions.
    Singh Gaur A; Nagamani S; Priyadarsinee L; Mahanta HJ; Parthasarathi R; Sastry GN
    Expert Opin Drug Discov; 2023 Jun; 18(6):579-590. PubMed ID: 37089036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug repositioning for diabetes based on 'omics' data mining.
    Zhang M; Luo H; Xi Z; Rogaeva E
    PLoS One; 2015; 10(5):e0126082. PubMed ID: 25946000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Web-based drug repurposing tools: a survey.
    Sam E; Athri P
    Brief Bioinform; 2019 Jan; 20(1):299-316. PubMed ID: 29028878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database.
    Wang L; Ma C; Wipf P; Liu H; Su W; Xie XQ
    AAPS J; 2013 Apr; 15(2):395-406. PubMed ID: 23292636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMPACT web portal: oncology database integrating molecular profiles with actionable therapeutics.
    Hintzsche JD; Yoo M; Kim J; Amato CM; Robinson WA; Tan AC
    BMC Med Genomics; 2018 Apr; 11(Suppl 2):26. PubMed ID: 29697364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring African Medicinal Plants for Potential Anti-Diabetic Compounds with the DIA-DB Inverse Virtual Screening Web Server.
    Pereira ASP; den Haan H; Peña-García J; Moreno MM; Pérez-Sánchez H; Apostolides Z
    Molecules; 2019 May; 24(10):. PubMed ID: 31137754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DrugRep: an automatic virtual screening server for drug repurposing.
    Gan JH; Liu JX; Liu Y; Chen SW; Dai WT; Xiao ZX; Cao Y
    Acta Pharmacol Sin; 2023 Apr; 44(4):888-896. PubMed ID: 36216900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repurposing existing drugs for new AMPK activators as a strategy to extend lifespan: a computer-aided drug discovery study.
    Mofidifar S; Sohraby F; Bagheri M; Aryapour H
    Biogerontology; 2018 Apr; 19(2):133-143. PubMed ID: 29335817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards systematic exploration of chemical space: building the fragment library module in molecular property diagnostic suite.
    Gaur AS; John L; Kumar N; Vivek MR; Nagamani S; Mahanta HJ; Sastry GN
    Mol Divers; 2023 Jun; 27(3):1459-1468. PubMed ID: 35925528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DIA-DB: A Database and Web Server for the Prediction of Diabetes Drugs.
    Pérez-Sánchez H; den-Haan H; Peña-García J; Lozano-Sánchez J; Martínez Moreno ME; Sánchez-Pérez A; Muñoz A; Ruiz-Espinosa P; Pereira ASP; Katsikoudi A; Gabaldón Hernández JA; Stojanovic I; Carretero AS; Tzakos AG
    J Chem Inf Model; 2020 Sep; 60(9):4124-4130. PubMed ID: 32692571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implementation of a Pipeline Using Disease-Disease Associations for Computational Drug Repurposing.
    Balasundaram P; Kanagavelu R; James N; Maiti S; Veerappapillai S; Karuppaswamy R
    Methods Mol Biol; 2019; 1903():129-148. PubMed ID: 30547440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performing an In Silico Repurposing of Existing Drugs by Combining Virtual Screening and Molecular Dynamics Simulation.
    Sohraby F; Bagheri M; Aryapour H
    Methods Mol Biol; 2019; 1903():23-43. PubMed ID: 30547434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Drug Repurposing: Current Trends.
    Karaman B; Sippl W
    Curr Med Chem; 2019; 26(28):5389-5409. PubMed ID: 29848268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Articulating target-mining techniques to disinter Alzheimer's specific targets for drug repurposing.
    G N S HS; Marise VLP; Rajalekshmi SG; Burri RR; Krishna Murthy TP
    Comput Methods Programs Biomed; 2022 Jul; 222():106931. PubMed ID: 35724476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new computational drug repurposing method using established disease-drug pair knowledge.
    Saberian N; Peyvandipour A; Donato M; Ansari S; Draghici S
    Bioinformatics; 2019 Oct; 35(19):3672-3678. PubMed ID: 30840053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repurposing Drugs to Target the Diabetes Epidemic.
    Turner N; Zeng XY; Osborne B; Rogers S; Ye JM
    Trends Pharmacol Sci; 2016 May; 37(5):379-389. PubMed ID: 26900045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.