These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 30092387)
1. The influence of Fe Ren X; Chen Y; Guo L; She Z; Gao M; Zhao Y; Shao M Ecotoxicol Environ Saf; 2018 Nov; 164():1-11. PubMed ID: 30092387 [TBL] [Abstract][Full Text] [Related]
2. Positive effects of magnetic Fe Ouyang L; Qiu B Bioresour Technol; 2023 Jan; 368():128296. PubMed ID: 36370942 [TBL] [Abstract][Full Text] [Related]
3. [Role of Ca2 in the formation of glucose-fed aerobic granular sludge in sequencing batch reactor]. Yang XP; Han J; Zhou LX Huan Jing Ke Xue; 2010 May; 31(5):1269-73. PubMed ID: 20623863 [TBL] [Abstract][Full Text] [Related]
4. Enhanced aerobic granulation by inoculating dewatered activated sludge under short settling time in a sequencing batch reactor. Wang L; Zhan H; Wang Q; Wu G; Cui D Bioresour Technol; 2019 Aug; 286():121386. PubMed ID: 31078075 [TBL] [Abstract][Full Text] [Related]
5. Functional analysis of extracellular polymeric substances (EPS) during the granulation of aerobic sludge: Relationship among EPS, granulation and nutrients removal. Liu X; Pei Q; Han H; Yin H; Chen M; Guo C; Li J; Qiu H Environ Res; 2022 May; 208():112692. PubMed ID: 34999029 [TBL] [Abstract][Full Text] [Related]
6. Aerobic granulation in a sequencing batch reactor for the treatment of piggery wastewater. Zhang D; Wang Y; Li H; Wang S; Jing Y Water Environ Res; 2013 Mar; 85(3):239-44. PubMed ID: 23581239 [TBL] [Abstract][Full Text] [Related]
7. Extracellular polymeric substances for Zn (II) binding during its sorption process onto aerobic granular sludge. Wei D; Li M; Wang X; Han F; Li L; Guo J; Ai L; Fang L; Liu L; Du B; Wei Q J Hazard Mater; 2016 Jan; 301():407-15. PubMed ID: 26410269 [TBL] [Abstract][Full Text] [Related]
8. Ball-milled magnetic sludge biochar enables fast aerobic granulation in anoxic/oxic process for the treatment of coal chemical wastewater. Li D; Yan S; Yong X; Zhang X; Zhou J Sci Total Environ; 2023 Jul; 880():163241. PubMed ID: 37011673 [TBL] [Abstract][Full Text] [Related]
9. Granulation process in an expanded granular sludge blanket (EGSB) reactor for domestic sewage treatment: Impact of extracellular polymeric substances compositions and evolution of microbial population. Xu H; Liu Y; Gao Y; Li F; Yang B; Wang M; Ma C; Tian Q; Song X; Sand W Bioresour Technol; 2018 Dec; 269():153-161. PubMed ID: 30172178 [TBL] [Abstract][Full Text] [Related]
10. Enhanced aerobic granulation and nitrogen removal by the addition of zeolite powder in a sequencing batch reactor. Wei D; Xue X; Chen S; Zhang Y; Yan L; Wei Q; Du B Appl Microbiol Biotechnol; 2013 Oct; 97(20):9235-43. PubMed ID: 23271668 [TBL] [Abstract][Full Text] [Related]
11. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor. Kong Q; Ngo HH; Shu L; Fu RS; Jiang CH; Miao MS J Hazard Mater; 2014 Aug; 279():511-7. PubMed ID: 25108827 [TBL] [Abstract][Full Text] [Related]
12. Effects of hydraulic retention time on aerobic granulation and granule growth kinetics at steady state with a fast start-up strategy. Liu YQ; Zhang X; Zhang R; Liu WT; Tay JH Appl Microbiol Biotechnol; 2016 Jan; 100(1):469-77. PubMed ID: 26403920 [TBL] [Abstract][Full Text] [Related]
13. The effect of seed sludge type on aerobic granulation via anoxic-aerobic operation. Erşan YÇ; Erguder TH Environ Technol; 2014; 35(21-24):2928-39. PubMed ID: 25189840 [TBL] [Abstract][Full Text] [Related]
14. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies. Zhu L; Qi HY; Lv ML; Kong Y; Yu YW; Xu XY Bioresour Technol; 2012 Nov; 124():455-9. PubMed ID: 23022627 [TBL] [Abstract][Full Text] [Related]
15. Enhanced aerobic granulation by applying the low-intensity direct current electric field via reactive iron anode. Guo Y; Zhang B; Zhang Z; Shi W; Zhang R; Cheng J; Li W; Cui F Water Res; 2019 Feb; 149():159-168. PubMed ID: 30439579 [TBL] [Abstract][Full Text] [Related]
16. Coupling of Fe-C and aerobic granular sludge to treat refractory wastewater from a membrane manufacturer in a pilot-scale system. Guo T; Ji Y; Zhao J; Horn H; Li J Water Res; 2020 Nov; 186():116331. PubMed ID: 32877808 [TBL] [Abstract][Full Text] [Related]
17. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Ni BJ; Xie WM; Liu SG; Yu HQ; Wang YZ; Wang G; Dai XL Water Res; 2009 Feb; 43(3):751-61. PubMed ID: 19059624 [TBL] [Abstract][Full Text] [Related]
18. [Effects of settling time and biofilm on the cultivation of nitrifying aerobic granular sludge]. Gao JF Huan Jing Ke Xue; 2007 Jun; 28(6):1245-51. PubMed ID: 17674730 [TBL] [Abstract][Full Text] [Related]
19. Effect of rotifers on the stability of aerobic granules. Li ZH; Kuba T; Kusuda T; Wang XC Environ Technol; 2007 Feb; 28(2):235-42. PubMed ID: 17396418 [TBL] [Abstract][Full Text] [Related]
20. Effect of EPS and its forms of aerobic granular sludge on sludge aggregation performance during granulation process based on XDLVO theory. Wang Y; Wang J; Liu Z; Huang X; Fang F; Guo J; Yan P Sci Total Environ; 2021 Nov; 795():148682. PubMed ID: 34328949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]