These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30092392)

  • 1. On the effect of local sample slope during modulus measurements by contact-resonance atomic force microscopy.
    Heinze K; Arnould O; Delenne JY; Lullien-Pellerin V; Ramonda M; George M
    Ultramicroscopy; 2018 Nov; 194():78-88. PubMed ID: 30092392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy.
    Stan G; King SW; Cook RF
    Nanotechnology; 2012 Jun; 23(21):215703. PubMed ID: 22551825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging.
    Stan G; Krylyuk S; Davydov AV; Vaudin MD; Bendersky LA; Cook RF
    Ultramicroscopy; 2009 Jul; 109(8):929-36. PubMed ID: 19361926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy.
    Stan G; Cook RF
    Nanotechnology; 2008 Jun; 19(23):235701. PubMed ID: 21825800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of contact-resonance AFM methods to polymer samples.
    Friedrich S; Cappella B
    Beilstein J Nanotechnol; 2020; 11():1714-1727. PubMed ID: 33224702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual resonance excitation system for the contact mode of atomic force microscopy.
    Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ
    Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging.
    Reggente M; Passeri D; Angeloni L; Scaramuzzo FA; Barteri M; De Angelis F; Persiconi I; De Stefano ME; Rossi M
    Nanoscale; 2017 May; 9(17):5671-5676. PubMed ID: 28422233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative mapping of the elastic modulus of soft materials with HarmoniX and PeakForce QNM AFM modes.
    Dokukin ME; Sokolov I
    Langmuir; 2012 Nov; 28(46):16060-71. PubMed ID: 23113608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the contact resonance frequencies in atomic force microscopy as a method for surface characterisation (invited).
    Rabe U; Kopycinska M; Hirsekorn S; Arnold W
    Ultrasonics; 2002 May; 40(1-8):49-54. PubMed ID: 12159988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving the Subsurface Structure and Elastic Modulus of Layered Films via Contact Resonance Atomic Force Microscopy.
    Stan G; Ciobanu CV; King SW
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55238-55248. PubMed ID: 36455132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastic moduli of faceted aluminum nitride nanotubes measured by contact resonance atomic force microscopy.
    Stan G; Ciobanu CV; Thayer TP; Wang GT; Creighton JR; Purushotham KP; Bendersky LA; Cook RF
    Nanotechnology; 2009 Jan; 20(3):035706. PubMed ID: 19417308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of drug particle surface energetics and young's modulus by atomic force microscopy and inverse gas chromatography.
    Davies M; Brindley A; Chen X; Marlow M; Doughty SW; Shrubb I; Roberts CJ
    Pharm Res; 2005 Jul; 22(7):1158-66. PubMed ID: 16028017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of tip shape on nanomechanical properties measurements using AFM.
    Nguyen QD; Chung KH
    Ultramicroscopy; 2019 Jul; 202():1-9. PubMed ID: 30927610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments.
    Sokolov I; Dokukin ME; Guz NV
    Methods; 2013 Apr; 60(2):202-13. PubMed ID: 23639869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of colloidal probes with atomic force microscopy for micromechanical assessment.
    Kain L; Andriotis OG; Gruber P; Frank M; Markovic M; Grech D; Nedelkovski V; Stolz M; Ovsianikov A; Thurner PJ
    J Mech Behav Biomed Mater; 2018 Sep; 85():225-236. PubMed ID: 29933150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic Force Microscopy: An Introduction.
    Piontek MC; Roos WH
    Methods Mol Biol; 2018; 1665():243-258. PubMed ID: 28940073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational shape tracking of atomic force microscopy cantilevers for improved sensitivity and accuracy of nanomechanical measurements.
    Wagner R; Killgore JP; Tung RC; Raman A; Hurley DC
    Nanotechnology; 2015 Jan; 26(4):045701. PubMed ID: 25556928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linearizing the frequency-stiffness relation in contact resonance atomic force microscopy for facilitated mechanical characterization.
    Wang W; Zhang W; Chen Y
    Microsc Res Tech; 2022 Jun; 85(6):2123-2130. PubMed ID: 35122360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.