These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30092504)

  • 1. Frequency analysis and resonant operation for efficient capacitive deionization.
    Ramachandran A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Nov; 144():581-591. PubMed ID: 30092504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self similarities in desalination dynamics and performance using capacitive deionization.
    Ramachandran A; Hemmatifar A; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2018 Sep; 140():323-334. PubMed ID: 29734040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High water recovery and improved thermodynamic efficiency for capacitive deionization using variable flowrate operation.
    Ramachandran A; Oyarzun DI; Hawks SA; Stadermann M; Santiago JG
    Water Res; 2019 May; 155():76-85. PubMed ID: 30831426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy consumption in capacitive deionization - Constant current versus constant voltage operation.
    Dykstra JE; Porada S; van der Wal A; Biesheuvel PM
    Water Res; 2018 Oct; 143():367-375. PubMed ID: 29986246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.
    Suss ME; Biesheuvel PM; Baumann TF; Stadermann M; Santiago JG
    Environ Sci Technol; 2014; 48(3):2008-15. PubMed ID: 24433022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Process design tools and techno-economic analysis for capacitive deionization.
    Hasseler TD; Ramachandran A; Tarpeh WA; Stadermann M; Santiago JG
    Water Res; 2020 Sep; 183():116034. PubMed ID: 32736269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic tradeoff between kinetic and energetic efficiencies in membrane capacitive deionization.
    Wang L; Lin S
    Water Res; 2018 Feb; 129():394-401. PubMed ID: 29174829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the flow efficiency in constant-current capacitive deionization.
    Hawks SA; Knipe JM; Campbell PG; Loeb CK; Hubert MA; Santiago JG; Stadermann M
    Water Res; 2018 Feb; 129():327-336. PubMed ID: 29161663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy breakdown in capacitive deionization.
    Hemmatifar A; Palko JW; Stadermann M; Santiago JG
    Water Res; 2016 Nov; 104():303-311. PubMed ID: 27565115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization.
    Tang W; Kovalsky P; Cao B; Waite TD
    Water Res; 2016 Aug; 99():112-121. PubMed ID: 27151285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage.
    Kim T; Dykstra JE; Porada S; van der Wal A; Yoon J; Biesheuvel PM
    J Colloid Interface Sci; 2015 May; 446():317-26. PubMed ID: 25278271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluoride Removal from Brackish Groundwaters by Constant Current Capacitive Deionization (CDI).
    Tang W; Kovalsky P; Cao B; He D; Waite TD
    Environ Sci Technol; 2016 Oct; 50(19):10570-10579. PubMed ID: 27608070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.
    Kim YJ; Choi JH
    Water Res; 2010 Feb; 44(3):990-6. PubMed ID: 19896691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of salt adsorption rate in membrane capacitive deionization.
    Zhao R; Satpradit O; Rijnaarts HH; Biesheuvel PM; van der Wal A
    Water Res; 2013 Apr; 47(5):1941-52. PubMed ID: 23395310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary surface charge for enhanced capacitive deionization.
    Gao X; Porada S; Omosebi A; Liu KL; Biesheuvel PM; Landon J
    Water Res; 2016 Apr; 92():275-82. PubMed ID: 26878361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination.
    Liang P; Yuan L; Yang X; Zhou S; Huang X
    Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.