These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 30092560)
1. Analysis of storage compounds and inorganic ions in dimorphic seeds of euhalophyte Suaeda salsa. Zhao Y; Yang Y; Song Y; Li Q; Song J Plant Physiol Biochem; 2018 Sep; 130():511-516. PubMed ID: 30092560 [TBL] [Abstract][Full Text] [Related]
2. Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa. Xu Y; Zhao Y; Duan H; Sui N; Yuan F; Song J BMC Genomics; 2017 Sep; 18(1):727. PubMed ID: 28903734 [TBL] [Abstract][Full Text] [Related]
3. Salinity affects production and salt tolerance of dimorphic seeds of Suaeda salsa. Wang F; Xu YG; Wang S; Shi W; Liu R; Feng G; Song J Plant Physiol Biochem; 2015 Oct; 95():41-8. PubMed ID: 26184090 [TBL] [Abstract][Full Text] [Related]
4. Cation and Zn Accumulation in Brown Seeds of the Euhalophyte Guo J; Liu L; Du M; Tian H; Wang B Front Plant Sci; 2020; 11():602427. PubMed ID: 33381136 [TBL] [Abstract][Full Text] [Related]
5. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Song J; Wang B Ann Bot; 2015 Feb; 115(3):541-53. PubMed ID: 25288631 [TBL] [Abstract][Full Text] [Related]
6. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress. Li W; Yamaguchi S; Khan MA; An P; Liu X; Tran LS Front Plant Sci; 2015; 6():1235. PubMed ID: 26793214 [TBL] [Abstract][Full Text] [Related]
7. The effect of plant growth regulators, nitric oxide, nitrate, nitrite and light on the germination of dimorphic seeds of Suaeda salsa under saline conditions. Li W; Liu X; Ajmal Khan M; Yamaguchi S J Plant Res; 2005 Jun; 118(3):207-14. PubMed ID: 15937723 [TBL] [Abstract][Full Text] [Related]
8. Utilisation of stored lipids during germination in dimorphic seeds of euhalophyte Suaeda salsa. Zhao Y; Ma Y; Li Q; Yang Y; Guo J; Song J Funct Plant Biol; 2018 Oct; 45(10):1009-1016. PubMed ID: 32291000 [TBL] [Abstract][Full Text] [Related]
9. Insights into the endophytic bacterial community comparison and their potential role in the dimorphic seeds of halophyte Suaeda glauca. Wang H; Narsing Rao MP; Gao Y; Li X; Gao R; Xie Y; Li Q; Li W BMC Microbiol; 2021 May; 21(1):143. PubMed ID: 33980153 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome assembly in Suaeda aralocaspica to reveal the distinct temporal gene/miRNA alterations between the dimorphic seeds during germination. Wang L; Wang HL; Yin L; Tian CY BMC Genomics; 2017 Oct; 18(1):806. PubMed ID: 29052505 [TBL] [Abstract][Full Text] [Related]
11. Fatty acids and bioactive compounds of the pulps and kernels of Brazilian palm species, guariroba (Syagrus oleraces), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata). Coimbra MC; Jorge N J Sci Food Agric; 2012 Feb; 92(3):679-84. PubMed ID: 21922463 [TBL] [Abstract][Full Text] [Related]
12. Differential Responses of Dimorphic Seeds and Seedlings to Abiotic Stresses in the Halophyte Zhang H; Hu M; Ma H; Jiang L; Zhao Z; Ma J; Wang L Front Plant Sci; 2021; 12():630338. PubMed ID: 33912201 [TBL] [Abstract][Full Text] [Related]
13. [Determination of oil contents and fatty acids in seeds of Torreya Arn. in China]. Chen Z; Zheng H; Fu Q; Zhou Y; Weng Y Zhongguo Zhong Yao Za Zhi; 1998 Aug; 23(8):456-7, 482, 511. PubMed ID: 11599370 [TBL] [Abstract][Full Text] [Related]
14. Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy. Wang L; Huang Z; Baskin CC; Baskin JM; Dong M Ann Bot; 2008 Nov; 102(5):757-69. PubMed ID: 18772148 [TBL] [Abstract][Full Text] [Related]
15. Differences in seed characteristics, germination and seedling growth of Wang Q; Xu D; Yin B; Zheng Y; Guo X; Li Y; Sun X; Wang L; Wu N Front Plant Sci; 2023; 14():1175812. PubMed ID: 37941666 [TBL] [Abstract][Full Text] [Related]
16. Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition. Serra JL; Rodrigues AMDC; de Freitas RA; Meirelles AJA; Darnet SH; Silva LHMD Food Res Int; 2019 Feb; 116():12-19. PubMed ID: 30716906 [TBL] [Abstract][Full Text] [Related]
17. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils. de Santana FC; Shinagawa FB; Araujo Eda S; Costa AM; Mancini-Filho J J Food Sci; 2015 Dec; 80(12):C2647-54. PubMed ID: 26512548 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues. Bakowska-Barczak AM; Schieber A; Kolodziejczyk P J Agric Food Chem; 2009 Dec; 57(24):11528-36. PubMed ID: 19928765 [TBL] [Abstract][Full Text] [Related]
19. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. Parry J; Su L; Luther M; Zhou K; Yurawecz MP; Whittaker P; Yu L J Agric Food Chem; 2005 Feb; 53(3):566-73. PubMed ID: 15686403 [TBL] [Abstract][Full Text] [Related]
20. Effect of growing area on tocopherols, carotenoids and fatty acid composition of Pistacia lentiscus edible oil. Mezni F; Khouja ML; Gregoire S; Martine L; Khaldi A; Berdeaux O Nat Prod Res; 2014; 28(16):1225-30. PubMed ID: 24628661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]