These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 30092756)
1. Putative candidate genes responsible for leaf rolling in rye (Secale cereale L.). Myśków B; Góralska M; Lenarczyk N; Czyczyło-Mysza I; Stojałowski S BMC Genet; 2018 Aug; 19(1):57. PubMed ID: 30092756 [TBL] [Abstract][Full Text] [Related]
2. Bidirectional selective genotyping approach for the identification of quantitative trait loci controlling earliness per se in winter rye (Secale cereale L.). Myśków B; Stojałowski S J Appl Genet; 2016 Feb; 57(1):45-50. PubMed ID: 26069166 [TBL] [Abstract][Full Text] [Related]
3. The mapping of QTLS for chlorophyll content and responsiveness to gibberellic (GA3) and abscisic (ABA) acids in rye. Milczarski P; Masojć P Cell Mol Biol Lett; 2002; 7(2A):449-55. PubMed ID: 12378249 [TBL] [Abstract][Full Text] [Related]
4. QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Hackauf B; Haffke S; Fromme FJ; Roux SR; Kusterer B; Musmann D; Kilian A; Miedaner T Theor Appl Genet; 2017 Sep; 130(9):1801-1817. PubMed ID: 28567664 [TBL] [Abstract][Full Text] [Related]
5. QTLs for resistance to preharvest sprouting in rye (Secale cereale L.). Masojć P; Banek-Tabor A; Milczarski P; Twardowska M J Appl Genet; 2007; 48(3):211-7. PubMed ID: 17666773 [TBL] [Abstract][Full Text] [Related]
6. Comparative analysis of genetic architectures for nine developmental traits of rye. Masojć P; Milczarski P; Kruszona P J Appl Genet; 2017 Aug; 58(3):297-305. PubMed ID: 28488059 [TBL] [Abstract][Full Text] [Related]
7. Chromosomal location of 46 new RAPD markers in rye (Secale cereale L.). González C; Camacho MV; Benito C Genetica; 2002 Jun; 115(2):205-11. PubMed ID: 12403175 [TBL] [Abstract][Full Text] [Related]
8. Detection of the quantitative trait loci for α-amylase activity on a high-density genetic map of rye and comparison of their localization to loci controlling preharvest sprouting and earliness. Myśków B; Stojałowski S; Lań A; Bolibok-Brągoszewska H; Rakoczy-Trojanowska M; Kilian A Mol Breed; 2012 Jun; 30(1):367-376. PubMed ID: 22707913 [TBL] [Abstract][Full Text] [Related]
9. Development of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat. Marcotuli I; Gadaleta A; Mangini G; Signorile AM; Zacheo SA; Blanco A; Simeone R; Colasuonno P Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28635630 [TBL] [Abstract][Full Text] [Related]
10. The identification of QTLs associated with the in vitro response of rye (Secale cereale L.). Bolibok H; Gruszczyńska A; Hromada-Judycka A; Rakoczy-Trojanowska M Cell Mol Biol Lett; 2007; 12(4):523-35. PubMed ID: 17579815 [TBL] [Abstract][Full Text] [Related]
11. A high density consensus map of rye (Secale cereale L.) based on DArT markers. Milczarski P; Bolibok-Brągoszewska H; Myśków B; Stojałowski S; Heller-Uszyńska K; Góralska M; Brągoszewski P; Uszyński G; Kilian A; Rakoczy-Trojanowska M PLoS One; 2011; 6(12):e28495. PubMed ID: 22163026 [TBL] [Abstract][Full Text] [Related]
12. Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). Miedaner T; Hübner M; Korzun V; Schmiedchen B; Bauer E; Haseneyer G; Wilde P; Reif JC BMC Genomics; 2012 Dec; 13():706. PubMed ID: 23244545 [TBL] [Abstract][Full Text] [Related]
13. QTL mapping for benzoxazinoid content, preharvest sprouting, α-amylase activity, and leaf rust resistance in rye (Secale cereale L.). Milczarski P; Masojć P; Krajewski P; Stochmal A; Kowalczyk M; Angelov M; Ivanova V; Schollenberger M; Wakuliński W; Banaszak Z; Banaszak K; Rakoczy-Trojanowska M PLoS One; 2017; 12(12):e0189912. PubMed ID: 29267335 [TBL] [Abstract][Full Text] [Related]
14. Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Tahmasebi S; Heidari B; Pakniyat H; McIntyre CL Genome; 2017 Jan; 60(1):26-45. PubMed ID: 27996306 [TBL] [Abstract][Full Text] [Related]
15. Identification of quantitative trait loci associated with leaf rust resistance in rye by precision mapping. Matuszkiewicz M; Grądzielewska A; Święcicka M; Ozturk A; Mokrzycka M; Igbari Aramide D; Song J; Kilian A; Rakoczy-Trojanowska M BMC Plant Biol; 2024 Apr; 24(1):291. PubMed ID: 38632518 [TBL] [Abstract][Full Text] [Related]
16. Mapping of sequence-specific markers and loci controlling preharvest sprouting and alpha-amylase activity in rye (Secale cereale L.) on the genetic map of an F2 (S120×S76) population. Myskow B; Stojalowski S; Milczarski P; Masojc P J Appl Genet; 2010; 51(3):283-7. PubMed ID: 20720302 [TBL] [Abstract][Full Text] [Related]
17. Genomic architecture of alpha-amylase activity in mature rye grain relative to that of preharvest sprouting. Masojć P; Wiśniewska M; Łań A; Milczarski P; Berdzik M; Pędziwiatr D; Pol-Szyszko M; Gałęza M; Owsianicki R J Appl Genet; 2011 May; 52(2):153-60. PubMed ID: 21225388 [TBL] [Abstract][Full Text] [Related]
18. Genetic mapping of pollen fertility restoration QTLs in rye (Secale cereale L.) with CMS Pampa. Niedziela A; Brukwiński W; Bednarek PT J Appl Genet; 2021 May; 62(2):185-198. PubMed ID: 33409933 [TBL] [Abstract][Full Text] [Related]
20. Analysis of quantitative trait loci affecting chlorophyll content of rice leaves in a double haploid population and two backcross populations. Jiang G; Zeng J; He Y Gene; 2014 Feb; 536(2):287-95. PubMed ID: 24361205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]