These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30092986)

  • 1. Chitosan-sodium alginate multilayer membrane developed by Fe
    Kazemi M; Jahanshahi M; Peyravi M
    Carbohydr Polym; 2018 Oct; 198():164-174. PubMed ID: 30092986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate.
    Kazemi M; Jahanshahi M; Peyravi M
    J Hazard Mater; 2018 Feb; 344():12-22. PubMed ID: 29031091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of zinc and copper co-doped WO3 nanoparticles: Application in photocatalysis and photobiology.
    Mohammadi S; Sohrabi M; Golikand AN; Fakhri A
    J Photochem Photobiol B; 2016 Aug; 161():217-21. PubMed ID: 27262854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Fe-doped TiO2 nanoparticles and investigation of photocatalytic decolorization of reactive red 198 under visible light irradiation.
    Moradi H; Eshaghi A; Hosseini SR; Ghani K
    Ultrason Sonochem; 2016 Sep; 32():314-319. PubMed ID: 27150776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity.
    Huang L; Xu H; Li Y; Li H; Cheng X; Xia J; Xu Y; Cai G
    Dalton Trans; 2013 Jun; 42(24):8606-16. PubMed ID: 23629048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles.
    Geng B; Jin Z; Li T; Qi X
    Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Fe-Cu binary oxide nanoparticles for the removal of hexavalent chromium from aqueous solution.
    Khan SU; Zaidi R; Hassan SZ; Farooqi IH; Azam A
    Water Sci Technol; 2016; 74(1):165-75. PubMed ID: 27386994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance photocatalytic reduction of Cr(VI) using a retrievable Fe-doped WO
    Boonprakob N; Channei D; Zhao C
    Discov Nano; 2024 Jan; 19(1):22. PubMed ID: 38294564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formic acid motivated photocatalytic reduction of Cr(VI) to Cr(III) with ZnFe
    Islam JB; Furukawa M; Tateishi I; Katsumata H; Kaneco S
    Environ Technol; 2021 Jul; 42(17):2740-2748. PubMed ID: 31916510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer.
    Huang XY; Ling L; Zhang WX
    J Environ Sci (China); 2018 May; 67():4-13. PubMed ID: 29778172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr(VI) reduction and methyl orange decolorization under visible light irradiation.
    Hashemzadeh F; Gaffarinejad A; Rahimi R
    J Hazard Mater; 2015 Apr; 286():64-74. PubMed ID: 25557940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nb
    Du Y; Zhang S; Wang J; Wu J; Dai H
    J Environ Sci (China); 2018 Apr; 66():358-367. PubMed ID: 29628105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic reduction of Cr(VI) using Mg-doped WO
    Thwala MM; Dlamini LN
    Environ Technol; 2020 Jul; 41(17):2277-2292. PubMed ID: 31181985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified stannous sulfide nanoparticles with metal-organic framework: Toward efficient and enhanced photocatalytic reduction of chromium (VI) under visible light.
    Xia Q; Huang B; Yuan X; Wang H; Wu Z; Jiang L; Xiong T; Zhang J; Zeng G; Wang H
    J Colloid Interface Sci; 2018 Nov; 530():481-492. PubMed ID: 29990784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micelle-Directing Synthesis of Ag-Doped WO
    Bate N; Shi H; Chen L; Wang J; Xu S; Chen W; Li J; Wang E
    Chem Asian J; 2017 Oct; 12(19):2597-2603. PubMed ID: 28727321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal organic framework-loaded polyethersulfone/polyacrylonitrile photocatalytic nanofibrous membranes under visible light irradiation for the removal of Cr(vi) and phenol from water.
    Koushkbaghi S; Kermani HA; Jamshidifard S; Faramarzi H; Khosravi M; Abadi PG; Jazi FS; Irani M
    RSC Adv; 2023 Apr; 13(19):12731-12741. PubMed ID: 37114028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SnS
    Zhang G; Chen D; Li N; Xu Q; Li H; He J; Lu J
    J Colloid Interface Sci; 2018 Mar; 514():306-315. PubMed ID: 29275249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal derived nitrogen doped SrTiO3 for efficient visible light driven photocatalytic reduction of chromium(VI).
    Xing G; Zhao L; Sun T; Su Y; Wang X
    Springerplus; 2016; 5(1):1132. PubMed ID: 27478749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A visible-light-driven heterojuncted composite WO
    Zheng J; Chang F; Jiao M; Xu Q; Deng B; Hu X
    J Colloid Interface Sci; 2018 Jan; 510():20-31. PubMed ID: 28934607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III).
    Chen Z; Li Y; Guo M; Xu F; Wang P; Du Y; Na P
    J Hazard Mater; 2016 Jun; 310():188-98. PubMed ID: 26921512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.