BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30092997)

  • 1. Cellulose and nanocellulose-based flexible-hybrid printed electronics and conductive composites - A review.
    Agate S; Joyce M; Lucia L; Pal L
    Carbohydr Polym; 2018 Oct; 198():249-260. PubMed ID: 30092997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of nanocellulose in printed electronics: a review.
    Hoeng F; Denneulin A; Bras J
    Nanoscale; 2016 Jul; 8(27):13131-54. PubMed ID: 27346635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and applications of transparent conductive nanocellulose paper.
    Li S; Lee PS
    Sci Technol Adv Mater; 2017; 18(1):620-633. PubMed ID: 28970870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-Based Polymeric Substrates for Printed Hybrid Electronics.
    Luoma E; Välimäki M; Ollila J; Heikkinen K; Immonen K
    Polymers (Basel); 2022 May; 14(9):. PubMed ID: 35567032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Frontiers of Functionalized Nanocellulose-Based Composites and Their Application as Chemical Sensors.
    Norrrahim MNF; Knight VF; Nurazzi NM; Jenol MA; Misenan MSM; Janudin N; Kasim NAM; Shukor MFA; Ilyas RA; Asyraf MRM; Naveen J
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36298039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects.
    Thomas P; Duolikun T; Rumjit NP; Moosavi S; Lai CW; Bin Johan MR; Fen LB
    J Mech Behav Biomed Mater; 2020 Oct; 110():103884. PubMed ID: 32957191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices.
    Dias OAT; Konar S; Leão AL; Yang W; Tjong J; Sain M
    Front Chem; 2020; 8():420. PubMed ID: 32528931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices.
    Xu T; Du H; Liu H; Liu W; Zhang X; Si C; Liu P; Zhang K
    Adv Mater; 2021 Dec; 33(48):e2101368. PubMed ID: 34561914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocellulose-graphene composites: Preparation and applications in flexible electronics.
    Yang H; Zheng H; Duan Y; Xu T; Xie H; Du H; Si C
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126903. PubMed ID: 37714239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive bacterial cellulose: From drug delivery to flexible electronics.
    Prilepskii A; Nikolaev V; Klaving A
    Carbohydr Polym; 2023 Aug; 313():120850. PubMed ID: 37182950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductive nanomaterials for printed electronics.
    Kamyshny A; Magdassi S
    Small; 2014 Sep; 10(17):3515-35. PubMed ID: 25340186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembling surface mounted components on ink-jet printed double sided paper circuit board.
    Andersson HA; Manuilskiy A; Haller S; Hummelgård M; Sidén J; Hummelgård C; Olin H; Nilsson HE
    Nanotechnology; 2014 Mar; 25(9):094002. PubMed ID: 24521824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Screen Printed Antennas on Fiber-Based Substrates for Sustainable HF RFID Assisted E-Fulfilment Smart Packaging.
    Machiels J; Appeltans R; Bauer DK; Segers E; Henckens Z; Van Rompaey W; Adons D; Peeters R; Geiβler M; Kuehnoel K; Tempel L; Weissbach T; Hübler AC; Verma A; Ferraris E; Deferme W; Buntinx M
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review.
    Hsu HH; Zhong W
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31242574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of printed electronics on the recyclability of paper: a case study for smart envelopes in courier and postal services.
    Aliaga C; Zhang H; Dobon A; Hortal M; Beneventi D
    Waste Manag; 2015 Apr; 38():41-8. PubMed ID: 25649917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications.
    Sharma S; Sudhakara P; Omran AAB; Singh J; Ilyas RA
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible electrically conductive films based on nanofibrillated cellulose and polythiophene prepared via oxidative polymerization.
    Dias OAT; Konar S; Leão AL; Sain M
    Carbohydr Polym; 2019 Sep; 220():79-85. PubMed ID: 31196553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.
    Zhu H; Luo W; Ciesielski PN; Fang Z; Zhu JY; Henriksson G; Himmel ME; Hu L
    Chem Rev; 2016 Aug; 116(16):9305-74. PubMed ID: 27459699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon-Based Composites with Biodegradable Matrix for Flexible Paper Electronics.
    Szałapak J; Zdanikowski B; Kądziela A; Lepak-Kuc S; Dybowska-Sarapuk Ł; Janczak D; Raczyński T; Jakubowska M
    Polymers (Basel); 2024 Mar; 16(5):. PubMed ID: 38475367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.