These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30092997)

  • 21. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors.
    Gaspar D; Fernandes SN; de Oliveira AG; Fernandes JG; Grey P; Pontes RV; Pereira L; Martins R; Godinho MH; Fortunato E
    Nanotechnology; 2014 Mar; 25(9):094008. PubMed ID: 24522012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wood-Based Flexible Electronics.
    Fu Q; Chen Y; Sorieul M
    ACS Nano; 2020 Mar; 14(3):3528-3538. PubMed ID: 32109046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review.
    Hsu HH; Zhong W
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31242574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Printed Zinc Paper Batteries.
    Yang P; Li J; Lee SW; Fan HJ
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103894. PubMed ID: 34741445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. All-printed large-scale integrated circuits based on organic electrochemical transistors.
    Andersson Ersman P; Lassnig R; Strandberg J; Tu D; Keshmiri V; Forchheimer R; Fabiano S; Gustafsson G; Berggren M
    Nat Commun; 2019 Nov; 10(1):5053. PubMed ID: 31699999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conductive Hydrogels as Smart Materials for Flexible Electronic Devices.
    Rong Q; Lei W; Liu M
    Chemistry; 2018 Nov; 24(64):16930-16943. PubMed ID: 29786914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible Lamination-Fabricated Ultra-High Frequency Diodes Based on Self-Supporting Semiconducting Composite Film of Silicon Micro-Particles and Nano-Fibrillated Cellulose.
    Sani N; Wang X; Granberg H; Andersson Ersman P; Crispin X; Dyreklev P; Engquist I; Gustafsson G; Berggren M
    Sci Rep; 2016 Jun; 6():28921. PubMed ID: 27357006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics.
    Baumbauer CL; Anderson MG; Ting J; Sreekumar A; Rabaey JM; Arias AC; Thielens A
    Sci Rep; 2020 Oct; 10(1):16543. PubMed ID: 33024141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advancement in conductive cotton fabrics through in situ polymerization of polypyrrole-nanocellulose composites.
    Hebeish A; Farag S; Sharaf S; Shaheen TI
    Carbohydr Polym; 2016 Oct; 151():96-102. PubMed ID: 27474547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanocellulose Composites as Smart Devices With Chassis, Light-Directed DNA Storage, Engineered Electronic Properties, and Chip Integration.
    Bencurova E; Shityakov S; Schaack D; Kaltdorf M; Sarukhanyan E; Hilgarth A; Rath C; Montenegro S; Roth G; Lopez D; Dandekar T
    Front Bioeng Biotechnol; 2022; 10():869111. PubMed ID: 36105598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial Nanocellulose Printed Circuit Boards for Medical Sensing.
    Yuen JD; Shriver-Lake LC; Walper SA; Zabetakis D; Breger JC; Stenger DA
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32268471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of Inkjet-Printed RFID-Based Sensor on Paper: Single- and Dual-Tag Sensor Topologies.
    Kim S; Georgiadis A; Tentzeris MM
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29914190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modern evolution of paper-based analytical devices for wearable use: from disorder to order.
    Chu T; Chu J; Gao B; He B
    Analyst; 2020 Aug; 145(16):5388-5399. PubMed ID: 32700700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanocellulose applications in sustainable electrochemical and piezoelectric systems: A review.
    Tayeb P; H Tayeb A
    Carbohydr Polym; 2019 Nov; 224():115149. PubMed ID: 31472850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conductive nanomaterials for 2D and 3D printed flexible electronics.
    Kamyshny A; Magdassi S
    Chem Soc Rev; 2019 Mar; 48(6):1712-1740. PubMed ID: 30569917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretchable electronics based on Ag-PDMS composites.
    Larmagnac A; Eggenberger S; Janossy H; Vörös J
    Sci Rep; 2014 Dec; 4():7254. PubMed ID: 25434843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.
    Jung YH; Chang TH; Zhang H; Yao C; Zheng Q; Yang VW; Mi H; Kim M; Cho SJ; Park DW; Jiang H; Lee J; Qiu Y; Zhou W; Cai Z; Gong S; Ma Z
    Nat Commun; 2015 May; 6():7170. PubMed ID: 26006731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible and Foldable Fully-Printed Carbon Black Conductive Nanostructures on Paper for High-Performance Electronic, Electrochemical, and Wearable Devices.
    Santhiago M; Corrêa CC; Bernardes JS; Pereira MP; Oliveira LJM; Strauss M; Bufon CCB
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24365-24372. PubMed ID: 28650141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper Nanoparticles for Printed Electronics: Routes Towards Achieving Oxidation Stability.
    Magdassi S; Grouchko M; Kamyshny A
    Materials (Basel); 2010 Sep; 3(9):4626-4638. PubMed ID: 28883344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.
    Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y
    Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.