These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30093037)

  • 1. Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk (Maydis stigma).
    Guo Q; Ma Q; Xue Z; Gao X; Chen H
    Carbohydr Polym; 2018 Oct; 198():581-588. PubMed ID: 30093037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization, antioxidant activities, and inhibition on α-glucosidase activity of corn silk polysaccharides obtained by different extraction methods.
    Jia Y; Gao X; Xue Z; Wang Y; Lu Y; Zhang M; Panichayupakaranant P; Chen H
    Int J Biol Macromol; 2020 Nov; 163():1640-1648. PubMed ID: 32941900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Fe (III), Zn (II), and Cr (III) complexation on the physicochemical properties and bioactivities of corn silk polysaccharide.
    Jia Y; Li N; Wang Q; Zhou J; Liu J; Zhang M; He C; Chen H
    Int J Biol Macromol; 2021 Oct; 189():847-856. PubMed ID: 34464643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.
    Sabiu S; O'Neill FH; Ashafa AOT
    J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation.
    Jia Y; Xue Z; Wang Y; Lu Y; Li R; Li N; Wang Q; Zhang M; Chen H
    Carbohydr Polym; 2021 Jan; 252():117185. PubMed ID: 33183632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.
    Chen S; Chen H; Tian J; Wang Y; Xing L; Wang J
    Carbohydr Polym; 2013 Oct; 98(1):428-37. PubMed ID: 23987364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activities of polysaccharide fractions from corn silk: Hemostatic, immune, and anti-lung cancer potentials.
    Zhu Y; Li Y; Li X; Chen T; Zhao H; Zhou H
    Int J Biol Macromol; 2024 Mar; 262(Pt 2):130156. PubMed ID: 38367774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spheroidization of ultrasonic degraded corn silk polysaccharide to enhance bioactivity by the anti-solvent precipitation method.
    Jia Y; Lu Y; Wang Y; Zhang M; He C; Chen H
    J Sci Food Agric; 2022 Jan; 102(1):53-61. PubMed ID: 34031881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-diabetic potential of Corn silk (
    Chaudhary RK; Karoli SS; Dwivedi PSR; Bhandari R
    J Diabetes Metab Disord; 2022 Jun; 21(1):445-454. PubMed ID: 35673494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction mechanism between luteoloside and corn silk glycans and the synergistic role in hypoglycemic activity.
    Qin S; Li Y; Shao H; Yu Y; Yang Y; Zeng Y; Huang J; Hu JM; Yang L
    Nat Prod Bioprospect; 2024 Jan; 14(1):10. PubMed ID: 38225526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory kinetics and mechanism of flavonoids from lotus (Nelumbo nucifera Gaertn.) leaf against pancreatic α-amylase.
    Wang M; Shi J; Wang L; Hu Y; Ye X; Liu D; Chen J
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2589-2596. PubMed ID: 30195612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular binding of toxic phenothiazinium derivatives, azures to bovine serum albumin: A comparative spectroscopic, calorimetric, and in silico study.
    Das S; Islam MM; Jana GC; Patra A; Jha PK; Hossain M
    J Mol Recognit; 2017 Jul; 30(7):. PubMed ID: 28101950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lignin, an active component in the corn silk water extract, inhibits glycation.
    Sano A; Inoue Y; Suzuki R
    Sci Rep; 2022 Oct; 12(1):17764. PubMed ID: 36273014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice.
    Yang J; Li X; Xue Y; Wang N; Liu W
    Int J Biol Macromol; 2014 Mar; 64():276-80. PubMed ID: 24315949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of glutathione and melatonin to human serum albumin: a comparative study.
    Li X; Wang S
    Colloids Surf B Biointerfaces; 2015 Jan; 125():96-103. PubMed ID: 25500326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of the By-Product of Corn: Guided Identification of Bioactive Terpenoids from
    Zhou WY; Niu JQ; Li Q; Du NN; Li JY; Lin B; Yao GD; Huang XX; Song SJ
    J Agric Food Chem; 2023 Feb; ():. PubMed ID: 36786443
    [No Abstract]   [Full Text] [Related]  

  • 17. An in-depth investigation of molecular interaction in zeaxanthin/corn silk glycan complexes and its positive role in hypoglycemic activity.
    Yang L; Zi C; Li Y; Huang J; Gu Z; Wang C; Hu JM; Jiang Z; Zhang W
    Food Chem; 2024 Apr; 438():137986. PubMed ID: 38000158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of ascorbic acid and α-tocopherol to bovine serum albumin: a comparative study.
    Li X; Wang G; Chen D; Lu Y
    Mol Biosyst; 2014 Feb; 10(2):326-37. PubMed ID: 24310979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between cell wall polysaccharides and polyphenols.
    Zhu F
    Crit Rev Food Sci Nutr; 2018 Jul; 58(11):1808-1831. PubMed ID: 28362107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of DNA interactions with bifenthrin by spectroscopic techniques and molecular modeling.
    Zhu P; Zhang G; Ma Y; Zhang Y; Miao H; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():7-14. PubMed ID: 23651773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.