These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30093337)

  • 1. Observation of Guided Acoustic Waves in a Human Skull.
    Estrada H; Gottschalk S; Reiss M; Neuschmelting V; Goldbrunner R; Razansky D
    Ultrasound Med Biol; 2018 Nov; 44(11):2388-2392. PubMed ID: 30093337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction and near-field observation of skull-guided acoustic waves.
    Estrada H; Rebling J; Razansky D
    Phys Med Biol; 2017 Jun; 62(12):4728-4740. PubMed ID: 28248639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guided Waves in the Skull.
    Estrada H; Razansky D
    Adv Exp Med Biol; 2022; 1364():411-422. PubMed ID: 35508886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation.
    Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X
    Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A viscoelastic model for the prediction of transcranial ultrasound propagation: application for the estimation of shear acoustic properties in the human skull.
    Pichardo S; Moreno-Hernández C; Andrew Drainville R; Sin V; Curiel L; Hynynen K
    Phys Med Biol; 2017 Aug; 62(17):6938-6962. PubMed ID: 28783716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal and shear mode ultrasound propagation in human skull bone.
    White PJ; Clement GT; Hynynen K
    Ultrasound Med Biol; 2006 Jul; 32(7):1085-96. PubMed ID: 16829322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband acoustic properties of a murine skull.
    Estrada H; Rebling J; Turner J; Razansky D
    Phys Med Biol; 2016 Mar; 61(5):1932-46. PubMed ID: 26878583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz.
    Marsac L; Chauvet D; La Greca R; Boch AL; Chaumoitre K; Tanter M; Aubry JF
    Int J Hyperthermia; 2017 Sep; 33(6):635-645. PubMed ID: 28540778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull.
    Hayner M; Hynynen K
    J Acoust Soc Am; 2001 Dec; 110(6):3319-30. PubMed ID: 11785832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound.
    Mueller JK; Ai L; Bansal P; Legon W
    J Neural Eng; 2017 Dec; 14(6):066012. PubMed ID: 28777075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls.
    Pichardo S; Sin VW; Hynynen K
    Phys Med Biol; 2011 Jan; 56(1):219-50. PubMed ID: 21149950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Skull Porous Trabecular Structure on Transcranial Ultrasound Imaging in the Presence of Elastic Wave Mode Conversion at Varying Incidence Angle.
    Jing B; Lindsey BD
    Ultrasound Med Biol; 2021 Sep; 47(9):2734-2748. PubMed ID: 34140169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the Effect of the Skull in Transcranial Photoacoustic Imaging: A Preliminary Ex Vivo Study.
    Manwar R; Kratkiewicz K; Avanaki K
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of ultrasound propagation through ex-vivo human temporal bone.
    Ammi AY; Mast TD; Huang IH; Abruzzo TA; Coussios CC; Shaw GJ; Holland CK
    Ultrasound Med Biol; 2008 Oct; 34(10):1578-89. PubMed ID: 18456391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-layer model with absorption for conservative estimation of the maximum acoustic transmission coefficient through the human skull for transcranial ultrasound stimulation.
    Attali D; Tiennot T; Schafer M; Fouragnan E; Sallet J; Caskey CF; Chen R; Darmani G; Bubrick EJ; Butler C; Stagg CJ; Klein-Flügge M; Verhagen L; Yoo SS; Pauly KB; Aubry JF
    Brain Stimul; 2023; 16(1):48-55. PubMed ID: 36549480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Standing-wave suppression for transcranial ultrasound by random modulation.
    Tang SC; Clement GT
    IEEE Trans Biomed Eng; 2010 Jan; 57(1):203-5. PubMed ID: 19695991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced ultrasound transmission through the human skull using shear mode conversion.
    Clement GT; White PJ; Hynynen K
    J Acoust Soc Am; 2004 Mar; 115(3):1356-64. PubMed ID: 15058357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel transcranial ultrasound imaging method with diverging wave transmission and deep learning approach.
    Du B; Wang J; Zheng H; Xiao C; Fang S; Lu M; Mao R
    Comput Methods Programs Biomed; 2020 Apr; 186():105308. PubMed ID: 31978869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local frequency dependence in transcranial ultrasound transmission.
    White PJ; Clement GT; Hynynen K
    Phys Med Biol; 2006 May; 51(9):2293-305. PubMed ID: 16625043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.